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Applying the kriging geostatistical technique to model parameters of water quality, 
TSS, and pH in a section of the Quindío river, Colombia

Resumen
Antecedentes: El Río Quindío, principal fuente de agua 
en el Departamento de Quindío, se ve afectado por la 
contaminación, especialmente de origen doméstico, 
agrícola e industrial, siendo la zona de La María una de 
las más perjudicadas. Objetivo: Este estudio se propuso 
recopilar datos durante la temporada de lluvias en el sector 
de La María para analizar la calidad del agua en términos 
de pH y sólidos totales en suspensión (TSS). Se empleó 
la técnica de Kriging para estimar estos parámetros en 
puntos no muestreados, considerando la dependencia 
espacial y temporal de los datos. Métodos: Se llevaron 
a cabo muestreos en diferentes puntos a lo largo del 
río y en distintos momentos. La técnica de Kriging se 
aplicó para analizar y estimar los valores de pH y sólidos 
totales en suspensión  en ubicaciones no muestreadas, 
minimizando errores y permitiendo una validación cruzada. 
Resultados: Los errores más pequeños se obtuvieron 
cuando las muestras de pH y sólidos totales en suspensión  
se ajustaron a una distribución normal, destacando la 
eficacia del Kriging en datos con fuerte autocorrelación 
espacial positiva. Esto garantizó una fiabilidad ideal en 
los resultados de estimación para pH y sólidos totales en 
suspensión  en ubicaciones no muestreadas. Conclusión: 
La aplicación exitosa de la técnica de Kriging para estimar 
la calidad del agua en puntos no muestreados destaca su 
utilidad en la gestión de la incertidumbre en parámetros 
críticos para la calidad del agua, como el pH y los sólidos 
totales en suspensión, contribuyendo así a estrategias 
efectivas de preservación y manejo de recursos hídricos.Palabras clave: Potencial de hidrógeno; 

sólidos suspendidos totales; método de 
interpolación Kriging, autocorrelación 
espacial; ríos; recursos hídricos.
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Abstract
Background: The Quindío River, a crucial water source in 
the Quindío Department, faces pollution issues, particularly 
from domestic, agricultural, and industrial discharges, with 
the La María area being notably affected. Objective: This 
study aimed to collect data during the rainy season in the La 
María sector to analyze water quality in terms of potential 
of hydrogen (pH) and total suspended solids (TSS). Kriging 
technique was employed to estimate these parameters at 
non-sampled points, considering spatial and temporal data 
dependence. Methods: Sampling was conducted at various 
points along the river and different time intervals. Kriging 
analysis was applied to estimate potential of hydrogen and 
total suspended solids values at non-sampled locations, 
minimizing errors and allowing for cross-validation. 
Results: Smallest errors were obtained when potential of 
hydrogen and total suspended solids samples adhered to 
a normal distribution, highlighting Kriging’s effectiveness in 
spatially autocorrelated data. This ensured ideal reliability in 
estimated results for pH and total suspended solids at non-
sampled locations. Conclusions: The successful application 
of Kriging for estimating water quality in non-sampled points 
underscores its utility in managing uncertainty in critical 
water quality parameters like potential of hydrogen and 
total suspended solids, contributing to effective strategies 
for water resource preservation and management.

Keywords: Potential of hydrogen; total 
suspended solids; Kriging interpolation 
method, spatial autocorrelation; rivers;  water 
resources.
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Water is a renewable, but fine, resource; it covers > 70% of the surface of the Earth. 
It is an element of great importance for life and a determining factor to comply with 
the physical, chemical, and biological processes that govern the natural environment, 
however, with 97.5% being salt water, only close to 2.5% is associated with fresh water. 
This liquid fulfills a transcendentally important role in the survival of living beings and 
development of society. It is essential for sustainability and growth of life, constituting 
a determining factor in biological processes that provide life to entire ecosystems that 
depend mainly on water [1]. The Quindío River is the principal supply source for the 
department of Quindío, its main channel rises to the northwest of the department at 
a height of 3780 masl and ends at a height of 1040 masl, whose channel flows in a 
southwesterly direction. This hydrographic unit is related directly with the municipalities 
of Salento, Armenia, Calarcá, and La Tebaida. However, nearly 300,000 people live on 
the river bank in the sector of La María. Water pollution is produced by factors directly 
related with the human metabolism and activities of domestic use such as dumping of 
sewage, food waste, paper, glass, and organic material. This includes factors generated 
by industrial-type activities; the presence of tanneries and slaughter plants, livestock, 
pig farming, and – lastly – that associated with mining given by extraction of construction 
materials, and use of heavy metals, like lithium, used in product refining. These activities 
seriously compromise the supply of drinking water, causing diseases, like hepatitis, 
gastroenteritis, and typhoid fever, affecting crops due to the increase of mineral salts 
from irrigation systems, and leading animal species to high mortality rates [6]. Given 
the vast importance of water for humans and the diverse species inhabiting the study 
zone, it becomes necessary to study its quality, where different types of analyses exist – 
among them, the microbiological analysis that encompasses total coliform detection; the 
physical-chemical analysis that ranges from measuring pH, nitrites, nitrates, turbidity to 
absorbance; and, lastly, aesthetic analysis that consists in determining parameters, like 
temperature, color, odor, flavor, salinity, and total suspended solids.

Quality indicators permit identifying two intrinsic aspects of water; what it contains and in 
what amount. Many parameters exist to evaluate water quality, but this study specifically 
collected information on the pH and TSS indices, which are described ahead: 
 
Concentration of hydrogen ions (pH): it is a unit of measure of alkalinity or acidity of 
a solution, measuring the amount of positive hydrogen ions present in a substance. 
Analysis of pH is fundamental to characterize water quality, allowing to identify the acid 
or alkaline conditions of a current, where extreme can seriously affect aquatic flora and 
fauna [1]. 

Total suspended solids (TSS): refers to the particulate matter maintained in suspension 
on surface water currents; its determination quite important for river ecosystems and 

Introduction
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water quality, given that suspended inorganic solids attenuate light through the dispersion 
phenomenon, affecting the photosynthesis process of aquatic flora and the capacity of 
fish to acquire food [2]. 

This research project used the Kriging interpolator, a method approximate and stochastic, 
given that it incorporates the effect of spatially uncorrelated residuals [3]; determines the 
value of the elevation supported by calculating the average of the closest elevations. 
Local-type interpolators are used due to their capacity to evaluate elevation variation 
at short distances by linking information from nearest neighbors. These are also used 
massively due to their low demand with computer machines [4]. This geostatistical 
method is of greatest use within the type of probabilistic interpolators based on the 
concept of regionalized random variable, where the value of an attribute tends to be 
dependent of its spatial location [5], [6], [7] and [8]. For which, the semivariogram is 
used instead of the standard deviation to analyze spatial variability, it is used to describe 
the correlation between observations as the distance increases, meaning that nearby 
observations are more similar than distant ones [9], [10],  [11] and [12].

The notion of the spatial autocorrelation of these variables is associated with the idea the 
values observed in adjacent geographic areas will be more similar than those expected 
under the assumption of linear independence [5] and [13]. The distribution analysis of a 
variable must consider the formation of patterns in function of proximity relations, given 
that these can affect, in non-random manner, other peculiarities of the same place. 

A method exists to corroborate the result of the predictions made by spatial interpolation 
algorithms [14], it is known as Cross Validation and consists in eliminating an elevation 
value, executing the interpolation algorithm, and estimating the value eliminated.

Study area

Data collection took place during the 2018 rainy season in a section of the Quindío River 
(sector of La María), a place chosen because of the high concentration of residential and 
industrial structures located on the riverbank, in the department of Quindío, Colombia. 
The sampling was conducted between October and December for a total of eight weeks 
where 20 monitoring stations were established, which captured information by following 
rigorous temporal pattern, which permitted storing 160 pH and TSS samples.

Fig 1 shows the exact geographic location where the 20 monitoring stations were set up. 
It also shows the stretch of the river involved in the study, together with the municipalities 
of Armenia (Colombia) and Calarcá, which depend directly on the water tributary and 
add contamination, and finally identifies the settlement known as “La María”, where 
activities such as material extraction, slaughter plants and tanneries are carried out, 

Materials and Methods
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another contributor to the decrease in water quality.

Figure 1. La María Sector in Armenia Quindío Colombia South America. (own source)

Descriptive statistical analysis

The Statgraphics Centurion XVII open software was used to perform a statistical summary 
for all the pH and TSS sets to discard the presence of atypical data, defining variables. In 
addition, normality tests were conducted, like Shapiro-Wilk, Kolmogorov-Smirnov, and 
Chi-squared with 5% significance level, to determine if the data fit a Gaussian distribution.
Classification of training groups

Through the subset module, the original data were divided into two subsets, both for 
the specific samples of pH and TSS for the eight weeks and the 20 stations in which the 
information was collected. A subset corresponding to 90% of the data (calibration) will 
be used to generate the interpolation surfaces and the remaining 10% will be used as 
control points - validation -.

Interpolation with probabilistic algorithms 

For each of the training sets (90%), for PH and TSS, ArcGIS 10.7 open software was 
used – common within the SIG community, through Geostatistical Analyst module. 
Likewise, this software permitted calculating the Moran and Getis-Ord indices to identify 
the way data from the pH and TSS variables radiate through the spatial units, - spatial 
autocorrelation -.

Calculation of the interpolation error

Cross validation was conducted by comparing the values taken as real from the validation 
sets and those estimated by the training sets. Thereafter, by using MSE and ME, the 
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quality of the interpolation algorithm will be assessed.

 

Data exploratory analysis

As shown in Table 1.a) no data symmetry exists, given that the mean, median, and mode 
do not coincide in their values, it is assumed that this distribution has negative asymmetry, 
although somewhat imperceptible. Furthermore, the pointing coefficient is close to zero 
(mesokurtic), inherent in a normal distribution. It indicates the possibility of adjusting the 
pH data in week 5 to a normal distribution. Additionally, Table 1.b) likewise, shows that 
the mean and median have different values, indicating a slight trend of the distribution 
toward asymmetry or bias to the right, besides, the pointing coefficient is somewhat 
distant from zero, with which it is not possible to affirm that TSS data for week 4 adhere to 
the normal distribution. To corroborate normality, the Chi square, Kolmogorov-Smirnov, 
and Shapiro-Wilks tests were used.

Table I. Descriptive statistical analysis. a) exploratory summary pH variable week 5. b) exploratory summary TSS variable week 4. (own source)

(a)  pH 5 Parameter Units value (b) TSS 4 Parameter Units value

Count und 18 Count Und 18

Average m 7.841 Average M 275.18

Median m 7.825 Median M 277.05

Mode m 7.81 Mode M

Variance m 0.00902 Variance M 2960.75

standard deviation m 0.09498 standard deviation M 54.41

variation coefficient dimensionless 1.211% variation coefficient dimensionless 19.77

standard error m 0.022 standard error M 12.83

Minimum m 7.63 Minimum M 172

Maximum m 8.02 Maximum M 407.7

Range m 0.39 Range M 235.7

Bias m -0.021 Bias M 0.396

Kurtosis dimensionless 0.367 Kurtosis dimensionless 1.083

Figure 2. Box and whisker plots. a) Box and whisker plot pH week 5. b) Box and whisker plot TSS variable week 4. (own source)

From Figure 2.a), it may be noted that 50% of pH values between 7.78 and 7.92 are 
comprised between the 25th and 75th quartiles. The 50th quartile, located exactly on the 
median value (green vertical line) within the box, shows clearly how large data appear 

Results 
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more frequently than the small data, due to negative asymmetry; the extreme values on 
the whiskers mark the minimum and maximum values for pH and indicate the absence 
of atypical values that are likely caused due to mistakes - gross errors - .Likewise, Figure 
2.b) indicates the absence of atypical data beyond the extreme values on the whiskers 
for the TSS variable corresponding to week 4. Where one, non-symmetry can be seen 
due to the absence of the median (50th quartile) in the box’s geometric center.

Figure 3.a) and Figure 3.b) indicate that collected observations stacked in bars indicate 
the value and number of times with which data on the pH variable on week 5 and TSS 
on week 4.

Figure 3. Histogram + normal function. a) Frequency diagram pH week 5. b) Frequency diagram TSS week 4. (own source)

Figure 3.a) shows how the adjustment function (dotted green line) underestimates the 
pH values from approximately 7.6 to 7.65, to then overestimate from (7.7, 7.76), then unde-
restimates from (7,76, 7.87), thereafter overestimates from 7.9 to 7.93 to finally underesti-
mate from 7.93 to 8.04. Likewise, the diagram in Figure 3.b) showed that the adjustment 
function underestimates in the interval (7.5, 7.74), as well as for interval (7.76, 7.82), and 
overestimates in the interval (7.82, 8.02).

The data exploratory analysis suggests a possible trend of the data for pH week 5 and 
TSS week 4 to adjust to the normal distribution. To validate this affirmation, three tests 
were performed: Chi-squared, Kolmogorov-Smirnov, and Shapiro-Wilk to corroborate 
the results shown in the statistical summary.

Table 2. Normality test for pH and TSS. Table a1, b1 and c1 for pH week 5. Table a2, b2 and c2 for TSS week 4. (own source)

Normality Test pH Normality Test TSS

Chi-Square 1.3333 a1) a2) Chi-Square 1.3333

P-Valor 0.7212 P-Valor 0.7212

Chi-Square 1.3333 b1) b2) Chi-Square 1.3333

P-Valor 0.7212 P-Valor 0.7212

Estadístico 0.9704 c1) c2) Estadístico 0.9704

P-Valor 0.7876 P-Valor 0.7876
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Tables 2.a1), 2.b1) and 2.c1), corresponding to the pH variable on week 5, for 5% 
significance level, permitted seeing clearly how the p value for the three tests is > 0.05; 
referring through hypothesis tests to the non-rejection of the null hypothesis, Ho, - the 
data come from a normal distribution - with 95% confidence interval. Similarly, for Tables 
2.a2), 2.b2), and 2.c2), related with the TSS variable week 4, the p value for the three tests 
is > 0.05, supporting statistically the fit of the data to a normal distribution.

It is notable that Table 2 only indicates statistical results corresponding to two data sets 
for one week of information (pH and TSS), of the eight weeks collected, given the large 
amount of information obtained after two months of study. Hence, a brief statistical 
description was made of the behavior of data from the seven weeks remaining for both 
variables.

Data for pH3, pH5, and pH6, corresponding to weeks 3, 5, and 6, respectively, fit a 
normal distribution according to tests performed, and for pH1, pH2, pH4, pH7, and pH8, 
corresponding to weeks 1, 2, 4, 7, and 8, respectively, did not fit a Gaussian distribution. 
Moreover, SST1, SST4, SST5; SST6, and SST7, associated to weeks 1, 4, 5, 6, and 7, 
respectively, showed adjustment to the normal distribution, while SST2, SST3, and SST8 
did not fit said Gaussian theoretical distribution.

Interpolation, ME and MSE

Table III. indicates the linear regression equations adjusted to the data observed and 
which govern the linear interpolation models and additionally highlights one of the 
advantages of the Kriging method, which permits obtaining information of the estimation 
variance (prediction error).

Kriging models pH week 5 TSS week 4

Prediction pHpredicted=0,5785*pHobserved+3,3107 SSTpredicted=0,4574*SSTobserved+146,1193

Error ErrorpHpredicted=-0,4215*pHobserved+3,3107 ErrorSSTpredicted=-0,5426*SSTobserved+146,1193

In Figure 4.a) and 4.c), the pH and TSS graphics, respectively, show how colors represent 
the ranges between which the variables move. Figure 5.a shows that the pH value 
does not move uniformly as the information collection advances from week to week. In 
addition, Figure 4.c. indicates how the TSS values vary homogeneously from week 1 to 
week 8. Figures 4.b and 4.d show the sites where the estimation is more precise and how 
the variance tends to increase when it is farther from the sampling points.
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Figure 4. pH and TSS prediction and error surfaces, using Ordinary Kriging. Figures 4.a and 4.b show prediction and error surfaces for pH week 5. 
Figures 4.c and 4.d show prediction and error surfaces for TSS week 4. (own source)

The ME average residues, as a result of interpolation with the ordinary Kriging method, 
for each training set corresponding to the eight weeks during which information was 
collected, enable complete statistical evaluation and more detailed analysis of the error 
behavior [15]. This lies specifically in the investigation of the introduction of systematic 
errors by processes to which the data were subjected (interpolation), this is why these 
residues indicate the presence or not of bias in the predictions (under- and over-
estimation). Highlighting the high or little fit of the data to the normal curve, additionally, 
the standard deviation of the residues focuses on identifying the validity of the theory 
proposed by the authors [16] and [17], which states that: “a mean of residuals close to zero 
leads to affirming that the standard deviation of the sample will have a value approximately 
equal to that given by the mean square error (MSE)”, and – consequently – predictions 
free of systematic errors within the materialization of the interpolation process.

Table IV. Comparison of average residues and standard deviation for pH and TSS. (own source)

Weeks Average pH residues Average TSS residues pH standard deviation TSS standard deviation

1 -0.03 -1.50 0.18 1.08

2 -0.07 12.86 0.09 23.37

3 -0.01 11.77 0.06 0.37

4 -0.02 4.72 0.14 8.98

5 -0.01 -0.73 0.03 1.25

6 0.01 2.19 0.05 0.79

7 0.13 -9.49 0.06 0.03

8 0.14 -17.27 0.00 17.52

Discussion 
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Table IV shows the average residues for pH and TSS, where the pH variable indicates for 
weeks 3, 5, and 6 mean residues close to zero, inferring an estimation free from bias (lack 
of systematic errors), as expected from sets that fit the normal distribution. For residues 
from the TSS variable, it may be stated that data from each of the eight weeks had 
mean residues not close to zero, which indicates the presence of bias in the estimations, 
however, those that fit the normal distribution had the lowest bias, as was the case of 
SST1, SST4, SST5, SST6, and SST7.

Validation of the quality of ordinary Kriging interpolation was conducted by using the 
statistical MSE or RMSE, managing to establish and quantify the most significant 
disparities found between applying the algorithms used to model surfaces and one used 
as reference - control points – [15], [18] and [19].

Figure 5.a and 5.b permitted easily visualizing how the training sets corresponding to 
week 3, 5, and 6 and 1, 4, 5, 6 and 7 for pH and TSS, respectively, had the lowest amount 
of error in the estimation models and ratified how – when fitting the normal distribution 
– these had the lowest MSE.

Figure 5. Graphic description of the MSE (RMSE) for pH and TSS. Figure 5.a RMSE for pH week 5 and Figure 5.b RMSE for TSS week 4. (own source)

Spatial autocorrelation

After the average and variance, it is the most important property of any geographic 
variable [13] and is explicitly associated with its spatial pattern. 

To measure the type of correlation the same variable has on different spatial units, the 
study calculated Moran’s index. In Figure 6.a, Moran’s index for pH has a value of 0.1884, 
indicating that the disposition of the data to spatial grouping (positive AE), the standard 
deviation values (z-score), and probability (p value) support the hypothesis behind this 
statistical test, which guarantees with 99% certainty the presence of the spatial grouping 
in the pH data. This means there are sampling data that share similar information on 
contiguous locations that irradiates through many spatial geographic units. In Figure 6.b, 
Moran’s index for the TSS variable TSS has a low value of 0.0875, which indicates a weak 
relationship between the sampling data. This points to no correlation, a trend supported 
by standard deviation values (z-score) and probability (p value). Hence, the values of 



300 Mundo Fesc E-ISSN 2216-0353 P-ISSN 2216-0388                                                       Vol 13, no. 25, pp. 289-305 de 2023                                      

Applying the kriging geostatistical technique to model parameters of water quality, 
TSS, and pH in a section of the Quindío river, Colombia

neighboring spatial units are produced randomly.

Figure 6. Moran’s index source ArcGIS 10.7 for the pH and TSS variables. Figure 6.a Moran’s index for pH week 5. Figure 6.b Moran’s index for TSS week 
4. (own source)

Given that Moran’s index is used to identify the type of spatial configuration followed 
by the data, the Getis-Ord index is eventually a measure of the concentration of the 
type of spatial configuration present, allowing to identify if a spatial pattern (grouping or 
dispersion) occurs in low bajo or high degree.

Figure 7.a shows how for the pH variable the degree of spatial grouping of the data for 
week 5 is high; the p value < 0.05 shows with 95% CI how the null hypothesis is rejected 
and the alternate hypothesis is accepted – data have a high degree of spatial grouping, 
in other words, it indicates that besides having a high degree of similarity between pH 
data for week 5, their locations are quite close among each other, which is supported by 
Tobler’s principle. Figure 7.b demonstrates that when no correlation is found between the 
data for TSS week 4, the degree of concentration is equally random. This clearly implies 
that the high and low concentrations given by the Getis-Ord index is only possible for 
cases with presence of spatial autocorrelation.
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Figure 7. Getis-Ord index for pH and TSS variables. Figure 7.a Getis-Ord index for pH week 5. Figure 7.b Getis-Ord index for TSS week 4. (own source)

These models conducted, as shown in Figures 6 and 7. Of the eight weeks for pH, weeks 
3, 5, and 6 had high degree of spatial grouping, this indicates that not only the positions 
of the stations where the measurements were taken are very close to each other, but 
additionally their values also are; that is, pH for those 20 stations maintains very similar 
values. This guarantees a much more effective estimation process, as shown in Table 5, 
as long as they fit the normal distribution. Likewise, permitting to monitor the variability 
of the contamination induced by diverse factors, given the high grouping of the pH values 
in these weeks, associating this behavior to no dumping of any pollutant, which would 
induce an abrupt change in pH in any of the stations, especially those between stations 
10 and 15, sites where the highest deposit of residues takes place onto the tributary, 
possibly due to low industrial and mining production during said weeks. In addition, TSS 
had very variable behavior for all the data within each week, not managing to establish 
any positive autocorrelation for the 20 data within each week; rather, following a mostly 
random behavior. Mutability possibly attributed to the dumping of human, mining, and 
industrial waste and helped by progressive increase in heavy rains.

The importance of identifying the type of relationship the pH and TSS variables have 
with each other is closely linked to the propagation of errors in an interpolation model, 
where it is clearly expected that a prediction model as its uncertainty (error) be normally 
distributed to keep the estimation error in a location to radiate spatially toward its 
neighbors. If the sampling values of the study variable are highly autocorrelated (high 
clusters), it is likely for the values in the estimation models to also be and, hence, their 
errors will surely share said property [15], [9]. Now, achieving little bias in the predictions 
will guarantee a very small propagation of such errors to close spatial units. 
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The result described converges into an optimal ordinary Kriging behavior for week 5 of 
the pH variable and week 4 of the TSS variable, as well as for all the sets that perfectly 
fit the normal distribution within their respective sets. This is undoubtedly an important 
result to determine water quality parameters with high degree of reliability, given that the 
relevance implied by having precise pH and TSS measurements, in the development and 
sustainability of the environment, and avoiding acquisition and propagation of diseases 
related with contamination. Likewise, it is a useful tool for environmental control and 
sanitation agencies that establish methodologies that allow to mitigate and record the 
quality of the water resource periodically at all points of the tributary; thus, minimizing 
the high index of gastrointestinal diseases caused by its consumption, which have placed 
negatively the department of Quindío in first place.

Using the RMSE statistic, recognized universally as the parameter in charge of evaluating 
the quality of the DEM, provided a report on the overall quality of the study surface; 
however, an additional measure known as the mean error (ME) was used to achieve a 
more reliable and specific analysis, guaranteeing a much more precise interpretation 
of the behavior of errors of the estimation models. This is how the mean error identified 
anomalies associated with systematic errors (Bias) introduced in the data processing.
The exploratory statistical analysis permitted identifying the qualities associated with 
each study phenomenon to guarantee that discrete data, like pH and TSS can be 
reproduced through a continuous adjustment function. That is, those training sets that 
fulfilled the normality test ensured better quality in the estimations. 

The spatial autocorrelation is a vitally important property and its study in geostatistical 
analyses is indispensable; its knowledge permits defining the spatial pattern (distribution) 
of the sampling points, as well as the tendency of their values, indicating if the values taken 
by a variable in a specific location depend or not on the values of that variable in other 
positions. Ideally, it is preferred for data not be correlated, however, the environmental 
information Will always follow the concept of regionalized variable (Tobler’s principle: 
“in the geographic space, everything is related to everything else, but nearby things are 
more related than distant things”) on which algorithms, like Kriging, focus. Besides, the 
presence of positive spatial autocorrelation is also highly useful to identify and monitor 
the variability of water quality, due to dumping of contaminants, given that it studies 
closely the pattern of similarity between the pH and TSS values within each week, 
respectively, indicating anomalies reflected by abrupt changes in their values, abducted 
to spills of polluting materials.

The sets with positive spatial autocorrelation (spatial grouping) and which adjusted 
to normality, guaranteed low error propagation, that is, that is, as there were no high 
over- and under-estimation of values (no presence of bias), there was no irradiation of 
considerable errors through nearby spatial units.

Conclusions
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Kriging is an interpolator with many virtues with respect to other prediction methods; 
optimization of the search radius for the neighbors to be used in a specific location 
(based on the analysis of the experimental semivariogram), effective determination of the 
weights assigned to each neighbor, based not only on the distance between the points 
and the location estimate, but also on the (relationship) distance between observation 
points, inclusion of an error prediction model; lastly, guaranteeing a linear, unbiased 
estimation of minimum variance. However, the advantage of Kriging with respect to 
other methods, attributed to this last virtue, was only achieved when the data were free 
of bias, that is, when they fit the Gaussian curve or normal distribution.

Generally, the Kriging geostatistical method showed its outstanding capacity to adjust 
its function to the limited amount of sampling points and its irregular distribution, where 
the statistic used globally reflected the Kriging performance for pH and TSS, where the 
worst results point-by-point, as expected, were obtained in monitoring station number 
20, given its remote location with respect to the other sampling points, complicating 
inclusion of neighbors for the interpolation process.

To the Universidad del Quindío and the Corporación Universitaria Empresarial Alexander 
von Humboldt.
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