Assessment of la Laguna dam structure and strength

Authors

  • Henry de Jesús Gallardo-Pérez Universidad Francisco de Paula Santander
  • Mawency Vergel-Ortega Universidad Francisco de Paula Santander
  • Jhan Piero Rojas-Suárez Universidad Francisco de Paula Santander

DOI:

https://doi.org/10.61799/2216-0388.739

Keywords:

hydrostatic pressure, finite elements, strength, probabilistic analysis

Abstract

The reservoir known as the Zulalá Lagoon, is one of the major tourist attractions of the municipality of Cacota, located in the department of Norte de Santander, in the region of the Santurbán paramo, it is considered strange because in this mountainous area almost all the water descends instantaneously due to the verticality of the terrain. The lagoon's dam is trapezoidal in shape and measures 12 meters along the top of the lagoon, 5 meters high and 8 meters at its base. This is the source of La Laguna Creek, which flows into the Cacota River, and the municipality's water resources depend on it through a water network formed in the Mata de Lata Village. Problem: Corrosion is currently observed in the structure of the dam wall, which leads to the determination of the dam's resistance to hydrostatic pressure in order to propose types and guidelines for periodic maintenance with the purpose of preventing the formation of cracks and possible leaks, as well as other deterioration that may occur in the dam over time. Methodology: the research, of a descriptive quantitative type, consisted of calculating the pressure exerted by the water on the dam, its current state, for which inspections, data collection and simulations using finite elements were carried out. Results: It is found that the dam resists a force exerted by water pressure of 116 thousand kgf, presents a deterioration of 8% in its surface layer and even though visually there is no evidence of cracks, there is evidence of water filtration that may affect its stability, there is a deficiency of resistance, acceptable variability of the soil structure and a maximum deformation calculated in the order of 7 cm in the center of the crown that may be associated to the surface cracking reported.

Downloads

Download data is not yet available.

References

G. Luna. Efectos físico-naturales y socio-económicos ley 1450/2011 Páramo de Santurbán, Bucaramanga: Universidad Santo Tomás, 2016

UPME. Plan de encuestamiento municipio de Cácota, Cúcuta: UFPS, 2017

J. Serrano. Análisis dinámico experimental y numérico de una presa bóveda: ajuste del modelo, Madrid: Universidad Politécnica de Madrid, 1015

C. Meza. Optimización topológica en el diseño de elementos estructurales mecánicos, Cali: Universidad autónoma de occidente, 2012

J. Camacho y M. Romero M. Análisis estructural con el método de elementos finitos, Cartagena: Universidad Tecnológica de Bolívar, 2012

Y. Bustamante. Optimización estructural de una presa a gravedad con elementos finitos, Cajamarca: Universidad Nacional de Cajamarca, 2017

J. Rojek and E. Oñate. “Multiscale analysis using a coupled discrete/finite element model” Interaction and Multiscale Mechanics, vol. 1, no. 1, pp. 1-31, 2007

O. Zienkiewicz and R. Taylor. The Finite Element Method: The Basis 5 ed, Oxford: Butterworth, 2000

R. Thornton and V. Colangelo. Ciencia de materiales para ingeniería, México: Ed. Prentice-Hall Hispanoamericana, S.A., 1997

S. Smale, M. Hirsch and R. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Pure and applied mathematics, New York: Elsevier Science, 2003

C. Hidalgo y A. Pacheco. “Herramientas para análisis por confiabilidad en geotecnia: La teoría” Revista de Ingenierías, vol. 10, no. 18, pp. 69-78, 2011

M. Duncan. “Factors of Safety and Reliability in Geotechnical Engineering” Journal of Geotechnical and Geoenvironmental Engineering, vol. 126, no. 4, pp. 307-316, 2010

A. Alvarado-Cornejo y A. Cornejo-Guardia. Estabilización de taludes en la Costa Verde – Callao, Lima: Universidad San Martin de Porres, 2014

B. Das. Fundamentos de Ingeniería Geotécnica, México: Cengage Learning, 2016

A. Montoya-Orozco. Confiabilidad en Estabilidad de Taludes, México: Universidad Nacional Autónoma de México, 2009

American Society for Testing and Materials (ASTM). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM D3-080, United State of America: American Society for Testing and Materials, 2004

T. Allen and R. Bathurst. Prediction of Reinforcement Loads in Reinforced Soil Walls, Washington: Federal Highway Administration, 2003

J. Alva-Hurtado y M. Cañari-Sanchez. Análisis de la Estabilidad de taludes de la Costa Verde, Lima: Universidad Nacional de Ingeniería, 2003

C. Escobar y G. Duque-Escobar. Geotecnia para el trópico andino, Bogotá: Universidad Nacional, 2017

S. Brizuela. “Análisis probabilístico de estructuras geotécnicas” Boletín Técnico PITRA, vol. 8, no. 5, pp. 1-7, 2017

F. Prada, A. Ramos, D. Solaque y B. Caicedo. “Confiabilidad aplicada al diseño geotécnico de un muro de contención” Obras y Proyectos, vol. 9, pp. 49-58, 2011

J. Duncan, S. Wright and T. Brandon. Soil strength and slope stability, New York: John Wiley & Sons, 2014

Published

2020-07-01

How to Cite

Gallardo-Pérez, H. de J., Vergel-Ortega, M. ., & Rojas-Suárez, J. P. (2020). Assessment of la Laguna dam structure and strength. Mundo FESC Journal, 10(S1), 254–263. https://doi.org/10.61799/2216-0388.739

Issue

Section

Articulos

Most read articles by the same author(s)

1 2 > >>