Empleo de material plástico reciclable para la fabricación de materiales de construcción: una revisión
DOI:
https://doi.org/10.61799/2216-0388.1338Palabras clave:
Desechos plásticos, material reciclable, nuevos materiales, materiales amigables, material de construcciónResumen
La inclusión de materiales de difícil degradación como los Deshechos Plásticos (PW) se han presentado como objeto de estudio a través de los últimos años, se hallaron formas de reutilizar dicho material, se observaron en ellos nuevas y distintas formas de inclusión de estos materiales, como el Tereftalato de Polietileno (PET) en agregados grueso y finos, en forma de áridos, fibras plásticas y fusionado a altas temperaturas con agregados naturales, se obtuvieron óptimos comportamientos higrotérmicos, resistencias a la compresión y flexión destacables, ductilidades aceptables entre otras características, así mismo en similares estudios con inclusión de Polietileno (PE), Polipropileno (PP), se observaron mezclas de PET con otra variedad de PW y con otros materiales de difícil degradación distintos a PW, donde se destacaron importantes resultados, de igual manera se han reportado estudios de materiales con inclusión de PW en fabricación de laminados, otros como ladrillos cocidos y sin cocer con ciertas inclusiones de PW como Polietileno de Baja Densidad (LDPE), Polietileno de Alta Densidad (HDPE), aquí se presentan fusiones de vidrio triturado con PW que muestran significativos resultados mecánicos, como se presentan en suelos arcillosos estabilizados con estos PW y los encontrados con el uso de Pasadores Plásticos Reciclados (RPP) para la estabilización de taludes y terraplenes.
Descargas
Citas
I. S. Oberoi, P. Rajkumar, and S. Das, “Disposal and recycling of plastics,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.562.
W. Ferdous et al., “Resources , Conservation & Recycling Recycling of landfill wastes ( tyres , plastics and glass ) in construction – A review on global waste generation , performance , application and future opportunities,” Resour. Conserv. Recycl., vol. 173, no. May, p. 105745, 2021, doi: 10.1016/j.resconrec.2021.105745.
H. T. Mohan, K. Jayanarayanan, and K. M. Mini, “Recent trends in utilization of plastics waste composites as construction materials,” Constr. Build. Mater., vol. 271, p. 121520, 2021, doi: 10.1016/j.conbuildmat.2020.121520.
M. S. Ranadive, H. P. Hadole, and S. V. Padamwar, “Performance of Stone Matrix Asphalt and Asphaltic Concrete Using Modifiers,” J. Mater. Civ. Eng., vol. 30, no. 1, p. 04017250, 2018, doi: 10.1061/(asce)mt.1943-5533.0002107.
S. T. Azeko, K. Mustapha, E. Annan, O. S. Odusanya, and W. O. Soboyejo, “Recycling of Polyethylene into Strong and Tough Earth-Based Composite Building Materials,” J. Mater. Civ. Eng., vol. 28, no. 2, p. 04015104, 2016, doi: 10.1061/(asce)mt.1943-5533.0001385.
F. K. Alqahtani, M. I. Khan, G. Ghataora, and S. Dirar, “Production of Recycled Plastic Aggregates and Its Utilization in Concrete,” J. Mater. Civ. Eng., vol. 29, no. 4, p. 04016248, 2017, doi: 10.1061/(asce)mt.1943-5533.0001765.
H. H. Mhanna, R. A. Hawileh, W. Abuzaid, M. Z. Naser, and J. A. Abdalla, “Experimental Investigation and Modeling of the Thermal Effect on the Mechanical Properties of Polyethylene-Terephthalate FRP Laminates,” J. Mater. Civ. Eng., vol. 32, no. 10, p. 04020296, 2020, doi: 10.1061/(asce)mt.1943-5533.0003389.
D. V. Marques et al., “Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation,” J. Clean. Prod., vol. 189, pp. 251–262, 2018, doi: 10.1016/j.jclepro.2018.04.069.
F. Liu, Y. Yan, L. Li, C. Lan, and G. Chen, “Performance of Recycled Plastic-Based Concrete,” J. Mater. Civ. Eng., vol. 27, no. 2, 2015, doi: 10.1061/(asce)mt.1943-5533.0000989.
E. Yaghoubi, A. Arulrajah, Y. C. Wong, and S. Horpibulsuk, “Stiffness Properties of Recycled Concrete Aggregate with Polyethylene Plastic Granules in Unbound Pavement Applications,” J. Mater. Civ. Eng., vol. 29, no. 4, p. 04016271, 2017, doi: 10.1061/(asce)mt.1943-5533.0001821.
K. A. Wiswamitra, S. M. Dewi, M. A. Choiron, and A. Wibowo, “Heat resistance of lightweight concrete with plastic aggregate from PET (polyethylene terephthalate)-mineral filler,” AIMS Mater. Sci., vol. 8, no. 1, pp. 99–118, 2021, doi: 10.3934/MATERSCI.2021007.
G. Kaur and S. Pavia, “Chemically treated plastic aggregates for eco-friendly cement mortars,” J. Mater. Cycles Waste Manag., no. 0123456789, 2021, doi: 10.1007/s10163-021-01235-2.
C. Maalouf et al., “An energy and carbon footprint assessment upon the usage of hemp-lime concrete and recycled-PET façades for office facilities in France and Italy,” J. Clean. Prod., vol. 170, pp. 1640–1653, 2018, doi: 10.1016/j.jclepro.2016.10.111.
R. P. Borg, O. Baldacchino, and L. Ferrara, “Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete,” Constr. Build. Mater., vol. 108, pp. 29–47, 2016, doi: 10.1016/j.conbuildmat.2016.01.029.
A. S. Esfandabad, S. M. Motevalizadeh, R. Sedghi, P. Ayar, and S. M. Asgharzadeh, “Fracture and mechanical properties of asphalt mixtures containing granular polyethylene terephthalate (PET),” Constr. Build. Mater., vol. 259, p. 120410, 2020, doi:
1016/j.conbuildmat.2020.120410.
J. Thorneycroft, J. Orr, P. Savoikar, and R. J. Ball, “Performance of structural concrete with recycled plastic waste as a partial replacement for sand,” Constr. Build. Mater., vol. 161, pp. 63–69, 2018, doi: 10.1016/j.conbuildmat.2017.11.127.
G. O. Bamigboye, K. Tarverdi, E. S. Wali, D. E. Bassey, and K. J. Jolayemi, “Effects of Dissimilar Curing Systems on the Strength and Durability of Recycled PET-Modified Concrete,” Silicon, 2021, doi: 10.1007/s12633-020-00898-0.
P. Górak, P. Postawa, and L. N. Trusilewicz, “Lightweight composite aggregates as a dual end-of-waste product from PET and anthropogenic materials,” J. Clean. Prod., vol. 256, 2020, doi: 10.1016/j.jclepro.2020.120366.
G. Martínez-Barrera, L. Ávila-Córdoba, F. Ureña-Núñez, M. A. Martínez, F. P. Álvarez-Rabanal, and O. Gencel, “Waste Polyethylene terephthalate flakes modified by gamma rays and its use as aggregate in concrete,” Constr. Build. Mater., vol. 268, no. xxxx, 2021, doi: 10.1016/j.conbuildmat.2020.121057.
F. A. Spósito et al., “Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime,” J. Build. Eng., vol. 32, no. January, 2020, doi: 10.1016/j.jobe.2020.101506.
N. Shah, V. Mavani, V. Kumar, M. Mungule, and K. K. R. Iyer, “Impact Assessment of Plastic Strips on Compressive Strength of Concrete,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019148, 2019, doi: 10.1061/(asce)mt.1943-5533.0002784.
G. Singh and R. Chauhan, “A Study on using Plastic Coated Aggregate for evaluation of modified Bituminous Concrete Mix,” IOP Conf. Ser. Mater. Sci. Eng., vol. 955, no. 1, 2020, doi: 10.1088/1757-899X/955/1/012052.
B. S. Al-Tulaian, M. J. Al-Shannag, and A. R. Al-Hozaimy, “Recycled plastic waste fibers for reinforcing Portland cement mortar,” Constr. Build. Mater., vol. 127, pp. 102–110, 2016, doi: 10.1016/j.conbuildmat.2016.09.131.
M. O. Kim, H. K. Lee, and H. K. Kim, “Cost and environmental effects of ocean-borne plastic flakes in cement mortar considering equivalent-strength mix design,” Constr. Build. Mater., vol. 291, p. 123267, 2021, doi: 10.1016/j.conbuildmat.2021.123267.
N. K. Bui, T. Satomi, and H. Takahashi, “Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study,” Waste Manag., vol. 78, pp. 79–93, 2018, doi: 10.1016/j.wasman.2018.05.035.
T. K. M. Ali, N. Hilal, R. H. Faraj, and A. I. Al-Hadithi, “Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste PET fibers,” Innov. Infrastruct. Solut., vol. 5, no. 3, 2020, doi: 10.1007/s41062-020-00323-w.
M. Nematzadeh and M. Mousavimehr, “Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019136, 2019, doi: 10.1061/(asce)mt.1943-5533.0002749.
X. Xu et al., “Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber,” Engineering, vol. 7, no. 6, pp. 857–867, 2021, doi: 10.1016/j.eng.2020.08.020.
A. Arulrajah, S. Perera, Y. C. Wong, S. Horpibulsuk, and F. Maghool, “Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes,” Constr. Build. Mater., vol. 239, p. 117819, 2020, doi: 10.1016/j.conbuildmat.2019.117819.
S. Perera, A. Arulrajah, Y. C. Wong, S. Horpibulsuk, and F. Maghool, “Utilizing recycled PET blends with demolition wastes as construction materials,” Constr. Build. Mater., vol. 221, pp. 200–209, 2019, doi: 10.1016/j.conbuildmat.2019.06.047.
S. İpek, A. Diri, and K. Mermerdaş, “Recycling the low-density polyethylene pellets in the pervious concrete production,” J. Mater. Cycles Waste Manag., vol. 23, no. 1, pp. 272–287, 2021, doi: 10.1007/s10163-020-01127-x.
W. F. Tang, S. L. Mak, and C. H. Li, “Sustainable management on recycling waste plastic in polymer-modified asphalt pavement and roads,” ISPCE-CN 2020 - IEEE Int. Symp. Prod. Compliance Eng. 2020, pp. 28–31, 2020, doi: 10.1109/ISPCE-CN51288.2020.9321859.
T. Ozbakkaloglu, L. Gu, and A. Gholampour, “Short-Term Mechanical Properties of Concrete Containing Recycled Polypropylene Coarse Aggregates under Ambient and Elevated Temperature,” J. Mater. Civ. Eng., vol. 29, no. 10, p. 04017191, 2017, doi: 10.1061/(asce)mt.1943-5533.0002046.
M. Małek, W. Łasica, M. Kadela, J. Kluczyński, and D. Dudek, “Physical and mechanical properties of polypropylene fibre-reinforced cement–glass composite,” Materials (Basel)., vol. 14, no. 3, pp. 1–19, 2021, doi: 10.3390/ma14030637.
M. A. Dalhat, H. I. Al-Abdul Wahhab, and K. Al-Adham, “Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019134, 2019, doi: 10.1061/(asce)mt.1943-5533.0002744.
G. Kaur and S. Pavia, “Durability of Mortars Made with Recycled Plastic Aggregates: Resistance to Frost Action, Salt Crystallization, and Cyclic Thermal–Moisture Variations,” J. Mater. Civ. Eng., vol. 33, no. 2, p. 04020450, 2021, doi: 10.1061/(asce)mt.1943-5533.0003566.
F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.
M. A. Dalhat and H. I. Al-Abdul Wahhab, “Properties of Recycled Polystyrene and Polypropylene Bounded Concretes Compared to Conventional Concretes,” J. Mater. Civ. Eng., vol. 29, no. 9, p. 04017120, 2017, doi: 10.1061/(asce)mt.1943-5533.0001896.
C. Signorini and V. Volpini, “Cemento Reforzado Con Fibra (FRCC),” Fibers, vol. 9, no. 3, pp. 1–15, 2021, doi: 10.3390/fib9030016.
J. K. Park and M. O. Kim, “Mechanical properties of cement-based materials with recycled plastic: A review,” Sustain., vol. 12, no. 21, pp. 1–21, 2020, doi: 10.3390/su12219060.
B. Balasubramanian, G. V. T. Gopala Krishna, V. Saraswathy, and K. Srinivasan, “Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic,” Constr. Build. Mater., vol. 278, p. 122400, 2021, doi: 10.1016/j.conbuildmat.2021.122400.
H. Limami, I. Manssouri, K. Cherkaoui, M. Saadaoui, and A. Khaldoun, “Thermal performance of unfired lightweight clay bricks with HDPE & PET waste plastics additives,” J. Build. Eng., vol. 30, 2020, doi: 10.1016/j.jobe.2020.101251.
A. F. Ikechukwu and C. Shabangu, “Strength and durability performance of masonry bricks produced with crushed glass and melted PET plastics,” Case Stud. Constr. Mater., vol. 14, p. e00542, 2021, doi: 10.1016/j.cscm.2021.e00542.
A. Kumi-Larbi, D. Yunana, P. Kamsouloum, M. Webster, D. C. Wilson, and C. Cheeseman, “Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks,” Waste Manag., vol. 80, pp. 112–118, 2018, doi: 10.1016/j.wasman.2018.09.003.
J. O. Akinyele, U. T. Igba, and B. G. Adigun, “Effect of waste PET on the structural properties of burnt bricks,” Sci. African, vol. 7, p. e00301, 2020, doi: 10.1016/j.sciaf.2020.e00301.
N. dos S. L. Louzada, J. A. C. Malko, and M. D. T. Casagrande, “Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate,” J. Mater. Civ. Eng., vol. 31, no. 10, p. 04019218, 2019, doi: 10.1061/(asce)mt.1943-5533.0002863.
K. Cheng, J. Zhang, Y. Miao, B. Ruan, and T. Peng, “The effect of plastic fines on the shear modulus and damping ratio of silty sands,” Bull. Eng. Geol. Environ., vol. 78, no. 8, pp. 5865–5876, 2019, doi: 10.1007/s10064-019-01522-1.
A. Iravanian and A. B. Haider, “Soil Stabilization Using Waste Plastic Bottles Fibers: A Review Paper,” IOP Conf. Ser. Earth Environ. Sci., vol. 614, no. 1, 2020, doi: 10.1088/1755-1315/614/1/012082.
M. S. Khan, S. Hossain, and G. Kibria, “Slope Stabilization Using Recycled Plastic Pins,” J. Perform. Constr. Facil., vol. 30, no. 3, p. 04015054, 2016, doi: 10.1061/(asce)cf.1943-5509.0000809.
M. A. Islam, M. S. Hossain, F. F. Badhon, and P. Bhandari, “Performance Evaluation of Recycled-Plastic-Pin-Supported Embankment over Soft Soil,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 6, p. 04021032, 2021, doi: 10.1061/(asce)gt.1943-5606.0002528.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Mundo FESC
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.