Detección de severidad de plagas utilizando RNC en cultivo del durazno en Departamento Norte De Santander, Colombia

Autores/as

DOI:

https://doi.org/10.61799/2216-0388.1523

Palabras clave:

Roya, Torque, Redes Neuronales Convolucionales, Durazno, Aprendizaje Profundo

Resumen

La creciente emergencia por aumentar los rendimientos de los cultivos, en pro de una menor carga negativa al ambiente, se han utilizado productos para protección de cultivos para impedir la aparición de plagas y enfermedades que generen pérdidas, o complicaciones de índole cuaternario que impacten mucho más en la comercialización y producción en la agricultura, esto ha causado que se generen herramientas tecnológicas para la detección de manera preventiva; para el manejo de las distintas plagas y enfermedades de cultivos agrícolas. En el manuscrito se presenta el uso de técnicas del aprendizaje automático como lo son las redes neuronales convolucionales que ayudan a la detección en especial del Torque y la Roya, las cuales son las principales afectaciones en la merma de la producción del durazno en la zona norte de Santander – Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

O. E. Apolo Apolo, D. Andújar Sánchez, D. Rieser, M. Pérez Ruíz and J. Martínez Guanter, “Deep-learning-based detection of in-field tomatoes using a terrestrial mobile platform”, Precision agriculture’21, pp. 319-329, 2021.

W. Alosaimi, H. Alyami and M. I. Uddin, “PeachNet: Peach Diseases Detection for Automatic Harvesting”, Computers, Materials & Continua, vol. 67, no. 2, 2021

U. Shruthi, V. Nagaveni and B. Raghavendra, “A review on machine learning classification techniques for plant disease detection”, 2019 5th International conference on advanced computing & communication systems (ICACCS), pp. 281-284, 2019

O. E. Apolo Apolo, M. Pérez Ruíz, J. Martínez Guanter and G. Egea, “Estimación de parámetros biofísicos de interés para la mejora de trigo usando inteligencia artificial”, X Congreso Ibérico de Agroingeniería, pp. 959-966, 2019

A. -. G. d. Colombia, “Conozca cómo funciona el negocio del durazno en el mercado colombiano,” 24 10 2018. [En línea]. Disponible en: https://agronet.gov.co/Noticias/Paginas/Conozca-c%C3%B3mo-funciona-el-negocio-del-durazno-en-el-mercado-colombiano.aspx

J. Torres Sánchez, A. Escolá, A. I. Castro, F. López Granados, J. Rosell, F. Jiménez-Brenes, R. Sanz, E. Gregorio, F. Sebé and J. Peña, “UAV photogrammetry vs mobile terrestrial laser scanning for woody crops characterization”, Precision agriculture’23, pp. 1019-1026, 2023

O. E. Apolo Apolo, J. Martínez Guanter , G. Egea, P. Raja and M. Pérez Ruíz, “Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV”, European Journal of Agronomy, vol. 115, p. 126030, 2020

M. Gomez Selvaraj, A. Vergara, F. Montenegro, H. Alonso Ruíz, N. Safari, D. Raymaekers, W. Ocimati and Ntamwira, “Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 169, pp. 110-124, 2020

L. Tan, J. Lu and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering, Special Issue “Information and Communications Technology in Agriculture”, vol. 3, no. 3, pp. 542-558, 2021

S. Sampathkumar and R. Rajeswari, “An automated crop and plant disease identification scheme using cognitive fuzzy c-means algorithm” IETE Journal of Research, vol. 68, no. 5, pp. 3786-3797, 2022

R. Anand, S. Veni and J. Aravinth, “An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method”, 2016 international conference on recent trends in information technology (ICRTIT), pp. 1-6, 2016

R. M. Prakash, G. Saraswathy, G. Ramalakshmi, K. Mangaleswari and T. Kaviya, “Detection of leaf diseases and classification using digital image processing”, 2017 international conference on innovations in information, embedded and communication systems (ICIIECS), pp. 1-4, 2017

A. Mengistu, S. G. Mengistu and D. Melesew, “An automatic coffee plant diseases identification using hybrid approaches of image processing and decision tree”, Indones. J. Electr. Eng. Comput. Sci., vol. 9, no. 3, pp. 806-811, 2018

C. Pérez Ariza, A. E. Nicholson and M. J. Flores, “Prediction of coffee rust disease using Bayesian networks”, Proceedings of the Sixth European Workshop on Probabilistic Graphical Models, vol. 6, pp. 259-266, 2012

E. Amaro García, J. Canales Cervantes, J. Cabrera Espejal, S. Ruíz and L. Farid García, “Identification of diseases and pests in tomato plants through artificial vision”, Intelligent Computing Methodologies: 16th International Conference, ICIC 2020, Bari, Italy, October 2--5, 2020, Proceedings, Part III 16, pp. 98-109, 2020

J. Negrete, “Artificial vision in mexican agriculture for identification of diseases, pests and invasive plants”, Journal of Advancements in Plant Science, vol. 1, no. 1, p. 1, 2018

G. J. Gibson, “Markov chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant epidemiology”, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 46, no. 2, pp. 215-233, 1997

W. A. Lozada-Portilla, M. J. Suárez-Baron and E. Avendaño-Fernández, “Aplicación de redes neuronales convolucionales para la detección del tizón tardío Phytophthora infestans en papa Solanum tuberosum” La Revista U.D.C.A Actualidad & Divulgación Científica, vol. 24, no. 2, 2021

I. Ahmed and P. K. Yadav, “Plant disease detection using machine learning approaches”, Expert Systems, vol. 40, no. 5, p. e13136, 2023

J. Trivadi, Y. Shamani and R. Gajjar, “Plant leaf disease detection using machine learning”, Emerging Technology Trends in Electronics, Communication and Networking: Third International Conference, ET2ECN 2020, Surat, India, February 7-8, 2020, Revised Selected Papers 3, pp. 267-276, 2020

Y. Kaya and E. Gursoy, “A novel multi-head CNN design to identify plant diseases using the fusion of RGB images”, Ecological Informatics, vol. 75, p. 101998, 2023

K. Zhang, Z. Xu, S. Dong, C. Cen and Q. Wu, “Identification of peach leaf disease infected by Xanthomonas campestris with deep learning”, Engineering in Agriculture, Environment and Food, vol. 12, no. 4, pp. 338-396, 2019

J. A. Martinez Chiguachi, A. G. Fajardo, J. S. Esquivel, D. M. González, Á. G. Prieto and D. Rincón, “Manejo integrado del cultivo de mango Mangifera indica L”, Ciencias Agropecuarias, vol. 6, no. 1, pp. 51-78, 2020

Y. Bengio, “Learning Deep Architectures for AI”, Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009

L. Deng and Y. Dong, “Deep Learning: Methods and Applications”, Foundations and Trends in Signal Processing, vol. 7, no. 3-4, pp. 197-387, 2014

A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing Systems 25, pp. 1097-1105, 2012

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean and M. Devin, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems”, arXiv preprint arXiv:1603.04467}, 2016

A. Poernomo and D.-K. Kang, “Biased dropout and crossmap dropout: learning towards effective dropout regularization in convolutional neural network”, Neural networks, vol. 104, pp. 60-67, 2018

H. Saad Hikmat and A. Adnan Mohsin, “COMPARISON OF OPTIMIZATION TECHNIQUES BASED ON GRADIENT DESCENT ALGORITHM: A REVIEW”, PalArch’s Journal of Archaeology of Egypt / Egyptology, vol. 18, no. 4, pp. 2715-2743, 2021

J. K. Fang, C. M. Fong, P. Yang, C. K. Hung, W. L. Lu and C. W. Chang, “AdaGrad Gradient Descent Method for AI Image Management”, {2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), pp. 1-2, 2020

Descargas

Publicado

2023-05-01

Cómo citar

Castellanos-Corzo, A. L., López-Meléndez, E., & Lara-Rodríguez, L. D. (2023). Detección de severidad de plagas utilizando RNC en cultivo del durazno en Departamento Norte De Santander, Colombia. Mundo FESC, 13(26), 213–226. https://doi.org/10.61799/2216-0388.1523

Número

Sección

Artículo Originales