In situ experimentation of thermal performance in masonry modules built with ceramic block using passive cooling patterns
DOI:
https://doi.org/10.61799/2216-0388.1121Keywords:
ceramic block, passive cooling, thermal efficiencyAbstract
The results of the comparative evaluation of the thermal behavior of two ceramic masonry construction systems are presented based on experimental modules built at a scale of 1:1 under real conditions of hot climate in the city of Cúcuta, Colombia, at latitude 7.9°N, longitude 72.5°W and altitude 298 meters above sea level. Module (A) of dimensions 1300mm high and 1690mm long built entirely in traditional masonry in its four vertical faces using H10 ceramic block is taken as a demonstrator of conventional construction pattern, and Module (B), which maintains the same height of 1300mm and is 1790mm long, is built as an experimental demonstrator manufactured with an innovative masonry system that uses a mixture of H15 and H10 ceramic blocks, applying passive cooling variables with techniques of increased thickness, heat dissipation by air chamber and solar control by shading, as passive strategies to reduce thermal transmittance; each module is insulated on the lower and upper horizontal faces of the enclosure considering only the heat transfer through the vertical masonry, the experiment is built within the facilities of the campus of the Universidad Francisco de Paula Santander, located without any type of natural or constructed obstruction for temperature and humidity data collection with an exterior monitoring system that records the climatic conditions to which the experiment is exposed and sensors in the interior walls that record the interior temperature and humidity of each enclosure with Data Loggers EASYLOG USB recorder for a period of 8 days. The results allow comparing the thermal performance of both systems and proving the efficiency of SYSTEM 04-B as a passive cooling construction pattern that allows a 4°C reduction in the final temperature transferred with respect to a conventional construction system.
Downloads
References
J. Sánchez & P. Ramírez, El clúster de la cerámica del área metropolitana de Cúcuta. Cúcuta: Universidad Francisco de Paula Santander, 2013
J. I. Baixas, “Envolvente: la piel de los edificios”, ARQ (Santiago), vol. 82, pp. 98-101. Diciembre 2012. Doi: 10.4067/S0717-69962012000300016
C. Vásquez, “El diseño del sistema de cerramiento”, ARQ (Santiago), vol. 82, pp. 102-107, Diciembre 2012. Doi: 10.4067/S0717-69962012000300017
G. Y. Yun, “Influences of perceived control on thermal comfort and energy use in buildings”, Energy and Buildings, vol. 158, pp. 822 - 830. January 2018. Doi: 10.1016/j.enbuild.2017.10.044
T. Gutiérrez, R. Romero y C. Sotelo, “Thermal energy impact of bioclimatic techniques applied to low-income housing in a hot dry climate”, Energy Procedia, vol. 57, pp. 1743-1752, 2014. Doi: 10.1016/j.egypro.2014.10.163
M.S. Narváez-Ortega, J. Sánchez-Molina y C.X. Diaz-Fuente, "Experimentación comparativa de transferencia de calor por puente térmico a partir de la modificación de la geometría de los tabiques en bloque cerámico H10", Respuestas, vol. 25, no. s2, pp. 29-35, 2020
S. M. Rozo-Rincón, J. Sánchez y D. C. Álvarez-Rozo, “Propiedades físico-mecánicas de bloques H10 fabricados en el área metropolitana de Cúcuta”, Ciencia e Ingeniería Neogranadina, vol. 24, no. 1, pp. 67-78, junio 2014. Doi: 10.18359/rcin.8
M.S. Narváez-Ortega, J. Sánchez-Molina, and J. S. Sánchez-Zúñiga, “Cámaras de aire ventiladas en un producto cerámico tradicional para envolventes de mampostería con enfriamiento pasivo”, Mundo Fesc, vol. 10, no. 19, pp. 128-135, junio 2020
M. S. Narváez-Ortega, J. Sánchez-Molina & C. X. Diaz-Fuentes, “Comparative evaluation of the physical, mechanical, and thermal properties of traditional H10 and H15 red clay blocks manufactured by the ceramic industry from San José de Cúcuta, Colombia”, Journal of Physics: Conference Series, vol. 1388, pp. 012007, November 2018. Doi: 10.1088/1742-6596/1388/1/012007
I. Guillén, V. Gómez-Lozano, J. M. Fran, P. A. Lopez-Jimenez, “Thermal behavior analysis of different multilayer façade: Numerical model versus experimental prototype”, Energy and Buildings, vol. 79, pp. 184-190, Agosto 2014. https://doi.org/10.1016/j.enbuild.2014.05.006
A. Mohammadi, M. R. Saghafi, M. Tahbaz & F. Nasrollahi, “The study of climate-responsive solutions in traditional dwellings of Bushehr City in Southern Iran”, Journal of Building Engineering, vol. 16, pp. 169 - 183. March 2018. Doi: 10.1016/j.jobe.2017.12.014
R. Yao, V. Costanzo, X. Li, Q. Zhang & B. Li, “The effect of passive measures on thermal comfort and energy conservation. A case study of the hot summer and cold winter climate in the Yangtze River region”, Journal of Building Engineering, vol. 15, pp. 298 – 310, January 2018. Doi: 10.1016/j.jobe.2017.11.012
R. Manrique, et al. "Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia", Energy, vol. 143, pp. 575-584, 2018. Doi: 10.1016/j.energy.2017.11.023
Cámara de Comercio de Cúcuta (CCC) 2022, Datos geográficos, Cúcuta: Cámara de Comercio de Cúcuta
K.Y. Li, C. Fleischmann & M. Spearpoint, “Determining Thermal Physical Properties of Pyrolyzing New Zealand Medium Density Fibreboard (MDF)” Chemical Engineering Science, vol. 95, pp.211-220, may 2013. Doi: 10.1016/j.ces.2013.03.019
S. Yu, P. Hing & X. Hu, “Thermal conductivity of polystyrene–aluminum nitride composite”, Composites Part A: Applied Science and Manufacturing, vol. 33, pp. 289-292, February 2002. Doi: 10.1016/S1359-835X(01)00107-5
W. Contreras, M. Galban & S. Sepulveda, “Análisis estadístico de la radiación solar en la ciudad de Cúcuta”, Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 16-22, marzo 2018, DOI: http://dx.doi.org/10.31908/19098367.3698
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 2020, Atlas Climatológico de Colombia, Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 2018 Informe estación Universidad Francisco de Paula Santander, promedio horario de radiación, Cúcuta: Instituto de Hidrología, Meteorología y Estudios Ambientales
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 2021, régimen anual de viento, Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.