Use of recyclable plastic material for the manufacture of building materials: a review
DOI:
https://doi.org/10.61799/2216-0388.1338Keywords:
Plastic waste, recyclable material, new materials, friendly materials, construction material.Abstract
The inclusion of materials that are difficult to degrade, such as Plastic Waste (PW), has been the subject of study in recent years. Ways of reusing this material have been found, and new and different ways of including these materials, such as Polyethylene Terephthalate (PET) in coarse and fine aggregates, have been observed in them, in the form of aggregates, plastic fibers and fused at high temperatures with natural aggregates, excellent hygrothermal behavior, outstanding compressive and flexural strengths, acceptable ductility among other characteristics were obtained, likewise in similar studies with the inclusion of Polyethylene (PE), Polypropylene (PP), In similar studies with the inclusion of Polyethylene (PE) and Polypropylene (PP), mixtures of PET with another variety of PW and with other materials of difficult degradation other than PW were observed, where important results were highlighted, likewise studies of materials with inclusion of PW in the manufacture of laminates have been reported, others such as fired and unfired bricks with certain inclusions of PW such as Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), here are presented fusions of crushed glass with PW that show significant mechanical results, as presented in clayey soils stabilized with these PW and those found with the use of Recycled Plastic Pins (RPP) for slope and embankment stabilization.
Downloads
References
I. S. Oberoi, P. Rajkumar, and S. Das, “Disposal and recycling of plastics,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.562.
W. Ferdous et al., “Resources , Conservation & Recycling Recycling of landfill wastes ( tyres , plastics and glass ) in construction – A review on global waste generation , performance , application and future opportunities,” Resour. Conserv. Recycl., vol. 173, no. May, p. 105745, 2021, doi: 10.1016/j.resconrec.2021.105745.
H. T. Mohan, K. Jayanarayanan, and K. M. Mini, “Recent trends in utilization of plastics waste composites as construction materials,” Constr. Build. Mater., vol. 271, p. 121520, 2021, doi: 10.1016/j.conbuildmat.2020.121520.
M. S. Ranadive, H. P. Hadole, and S. V. Padamwar, “Performance of Stone Matrix Asphalt and Asphaltic Concrete Using Modifiers,” J. Mater. Civ. Eng., vol. 30, no. 1, p. 04017250, 2018, doi: 10.1061/(asce)mt.1943-5533.0002107.
S. T. Azeko, K. Mustapha, E. Annan, O. S. Odusanya, and W. O. Soboyejo, “Recycling of Polyethylene into Strong and Tough Earth-Based Composite Building Materials,” J. Mater. Civ. Eng., vol. 28, no. 2, p. 04015104, 2016, doi: 10.1061/(asce)mt.1943-5533.0001385.
F. K. Alqahtani, M. I. Khan, G. Ghataora, and S. Dirar, “Production of Recycled Plastic Aggregates and Its Utilization in Concrete,” J. Mater. Civ. Eng., vol. 29, no. 4, p. 04016248, 2017, doi: 10.1061/(asce)mt.1943-5533.0001765.
H. H. Mhanna, R. A. Hawileh, W. Abuzaid, M. Z. Naser, and J. A. Abdalla, “Experimental Investigation and Modeling of the Thermal Effect on the Mechanical Properties of Polyethylene-Terephthalate FRP Laminates,” J. Mater. Civ. Eng., vol. 32, no. 10, p. 04020296, 2020, doi: 10.1061/(asce)mt.1943-5533.0003389.
D. V. Marques et al., “Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation,” J. Clean. Prod., vol. 189, pp. 251–262, 2018, doi: 10.1016/j.jclepro.2018.04.069.
F. Liu, Y. Yan, L. Li, C. Lan, and G. Chen, “Performance of Recycled Plastic-Based Concrete,” J. Mater. Civ. Eng., vol. 27, no. 2, 2015, doi: 10.1061/(asce)mt.1943-5533.0000989.
E. Yaghoubi, A. Arulrajah, Y. C. Wong, and S. Horpibulsuk, “Stiffness Properties of Recycled Concrete Aggregate with Polyethylene Plastic Granules in Unbound Pavement Applications,” J. Mater. Civ. Eng., vol. 29, no. 4, p. 04016271, 2017, doi: 10.1061/(asce)mt.1943-5533.0001821.
K. A. Wiswamitra, S. M. Dewi, M. A. Choiron, and A. Wibowo, “Heat resistance of lightweight concrete with plastic aggregate from PET (polyethylene terephthalate)-mineral filler,” AIMS Mater. Sci., vol. 8, no. 1, pp. 99–118, 2021, doi: 10.3934/MATERSCI.2021007.
G. Kaur and S. Pavia, “Chemically treated plastic aggregates for eco-friendly cement mortars,” J. Mater. Cycles Waste Manag., no. 0123456789, 2021, doi: 10.1007/s10163-021-01235-2.
C. Maalouf et al., “An energy and carbon footprint assessment upon the usage of hemp-lime concrete and recycled-PET façades for office facilities in France and Italy,” J. Clean. Prod., vol. 170, pp. 1640–1653, 2018, doi: 10.1016/j.jclepro.2016.10.111.
R. P. Borg, O. Baldacchino, and L. Ferrara, “Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete,” Constr. Build. Mater., vol. 108, pp. 29–47, 2016, doi: 10.1016/j.conbuildmat.2016.01.029.
A. S. Esfandabad, S. M. Motevalizadeh, R. Sedghi, P. Ayar, and S. M. Asgharzadeh, “Fracture and mechanical properties of asphalt mixtures containing granular polyethylene terephthalate (PET),” Constr. Build. Mater., vol. 259, p. 120410, 2020, doi:
1016/j.conbuildmat.2020.120410.
J. Thorneycroft, J. Orr, P. Savoikar, and R. J. Ball, “Performance of structural concrete with recycled plastic waste as a partial replacement for sand,” Constr. Build. Mater., vol. 161, pp. 63–69, 2018, doi: 10.1016/j.conbuildmat.2017.11.127.
G. O. Bamigboye, K. Tarverdi, E. S. Wali, D. E. Bassey, and K. J. Jolayemi, “Effects of Dissimilar Curing Systems on the Strength and Durability of Recycled PET-Modified Concrete,” Silicon, 2021, doi: 10.1007/s12633-020-00898-0.
P. Górak, P. Postawa, and L. N. Trusilewicz, “Lightweight composite aggregates as a dual end-of-waste product from PET and anthropogenic materials,” J. Clean. Prod., vol. 256, 2020, doi: 10.1016/j.jclepro.2020.120366.
G. Martínez-Barrera, L. Ávila-Córdoba, F. Ureña-Núñez, M. A. Martínez, F. P. Álvarez-Rabanal, and O. Gencel, “Waste Polyethylene terephthalate flakes modified by gamma rays and its use as aggregate in concrete,” Constr. Build. Mater., vol. 268, no. xxxx, 2021, doi: 10.1016/j.conbuildmat.2020.121057.
F. A. Spósito et al., “Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime,” J. Build. Eng., vol. 32, no. January, 2020, doi: 10.1016/j.jobe.2020.101506.
N. Shah, V. Mavani, V. Kumar, M. Mungule, and K. K. R. Iyer, “Impact Assessment of Plastic Strips on Compressive Strength of Concrete,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019148, 2019, doi: 10.1061/(asce)mt.1943-5533.0002784.
G. Singh and R. Chauhan, “A Study on using Plastic Coated Aggregate for evaluation of modified Bituminous Concrete Mix,” IOP Conf. Ser. Mater. Sci. Eng., vol. 955, no. 1, 2020, doi: 10.1088/1757-899X/955/1/012052.
B. S. Al-Tulaian, M. J. Al-Shannag, and A. R. Al-Hozaimy, “Recycled plastic waste fibers for reinforcing Portland cement mortar,” Constr. Build. Mater., vol. 127, pp. 102–110, 2016, doi: 10.1016/j.conbuildmat.2016.09.131.
M. O. Kim, H. K. Lee, and H. K. Kim, “Cost and environmental effects of ocean-borne plastic flakes in cement mortar considering equivalent-strength mix design,” Constr. Build. Mater., vol. 291, p. 123267, 2021, doi: 10.1016/j.conbuildmat.2021.123267.
N. K. Bui, T. Satomi, and H. Takahashi, “Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study,” Waste Manag., vol. 78, pp. 79–93, 2018, doi: 10.1016/j.wasman.2018.05.035.
T. K. M. Ali, N. Hilal, R. H. Faraj, and A. I. Al-Hadithi, “Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste PET fibers,” Innov. Infrastruct. Solut., vol. 5, no. 3, 2020, doi: 10.1007/s41062-020-00323-w.
M. Nematzadeh and M. Mousavimehr, “Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019136, 2019, doi: 10.1061/(asce)mt.1943-5533.0002749.
X. Xu et al., “Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber,” Engineering, vol. 7, no. 6, pp. 857–867, 2021, doi: 10.1016/j.eng.2020.08.020.
A. Arulrajah, S. Perera, Y. C. Wong, S. Horpibulsuk, and F. Maghool, “Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes,” Constr. Build. Mater., vol. 239, p. 117819, 2020, doi: 10.1016/j.conbuildmat.2019.117819.
S. Perera, A. Arulrajah, Y. C. Wong, S. Horpibulsuk, and F. Maghool, “Utilizing recycled PET blends with demolition wastes as construction materials,” Constr. Build. Mater., vol. 221, pp. 200–209, 2019, doi: 10.1016/j.conbuildmat.2019.06.047.
S. İpek, A. Diri, and K. Mermerdaş, “Recycling the low-density polyethylene pellets in the pervious concrete production,” J. Mater. Cycles Waste Manag., vol. 23, no. 1, pp. 272–287, 2021, doi: 10.1007/s10163-020-01127-x.
W. F. Tang, S. L. Mak, and C. H. Li, “Sustainable management on recycling waste plastic in polymer-modified asphalt pavement and roads,” ISPCE-CN 2020 - IEEE Int. Symp. Prod. Compliance Eng. 2020, pp. 28–31, 2020, doi: 10.1109/ISPCE-CN51288.2020.9321859.
T. Ozbakkaloglu, L. Gu, and A. Gholampour, “Short-Term Mechanical Properties of Concrete Containing Recycled Polypropylene Coarse Aggregates under Ambient and Elevated Temperature,” J. Mater. Civ. Eng., vol. 29, no. 10, p. 04017191, 2017, doi: 10.1061/(asce)mt.1943-5533.0002046.
M. Małek, W. Łasica, M. Kadela, J. Kluczyński, and D. Dudek, “Physical and mechanical properties of polypropylene fibre-reinforced cement–glass composite,” Materials (Basel)., vol. 14, no. 3, pp. 1–19, 2021, doi: 10.3390/ma14030637.
M. A. Dalhat, H. I. Al-Abdul Wahhab, and K. Al-Adham, “Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification,” J. Mater. Civ. Eng., vol. 31, no. 8, p. 04019134, 2019, doi: 10.1061/(asce)mt.1943-5533.0002744.
G. Kaur and S. Pavia, “Durability of Mortars Made with Recycled Plastic Aggregates: Resistance to Frost Action, Salt Crystallization, and Cyclic Thermal–Moisture Variations,” J. Mater. Civ. Eng., vol. 33, no. 2, p. 04020450, 2021, doi: 10.1061/(asce)mt.1943-5533.0003566.
F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.
M. A. Dalhat and H. I. Al-Abdul Wahhab, “Properties of Recycled Polystyrene and Polypropylene Bounded Concretes Compared to Conventional Concretes,” J. Mater. Civ. Eng., vol. 29, no. 9, p. 04017120, 2017, doi: 10.1061/(asce)mt.1943-5533.0001896.
C. Signorini and V. Volpini, “Cemento Reforzado Con Fibra (FRCC),” Fibers, vol. 9, no. 3, pp. 1–15, 2021, doi: 10.3390/fib9030016.
J. K. Park and M. O. Kim, “Mechanical properties of cement-based materials with recycled plastic: A review,” Sustain., vol. 12, no. 21, pp. 1–21, 2020, doi: 10.3390/su12219060.
B. Balasubramanian, G. V. T. Gopala Krishna, V. Saraswathy, and K. Srinivasan, “Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic,” Constr. Build. Mater., vol. 278, p. 122400, 2021, doi: 10.1016/j.conbuildmat.2021.122400.
H. Limami, I. Manssouri, K. Cherkaoui, M. Saadaoui, and A. Khaldoun, “Thermal performance of unfired lightweight clay bricks with HDPE & PET waste plastics additives,” J. Build. Eng., vol. 30, 2020, doi: 10.1016/j.jobe.2020.101251.
A. F. Ikechukwu and C. Shabangu, “Strength and durability performance of masonry bricks produced with crushed glass and melted PET plastics,” Case Stud. Constr. Mater., vol. 14, p. e00542, 2021, doi: 10.1016/j.cscm.2021.e00542.
A. Kumi-Larbi, D. Yunana, P. Kamsouloum, M. Webster, D. C. Wilson, and C. Cheeseman, “Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks,” Waste Manag., vol. 80, pp. 112–118, 2018, doi: 10.1016/j.wasman.2018.09.003.
J. O. Akinyele, U. T. Igba, and B. G. Adigun, “Effect of waste PET on the structural properties of burnt bricks,” Sci. African, vol. 7, p. e00301, 2020, doi: 10.1016/j.sciaf.2020.e00301.
N. dos S. L. Louzada, J. A. C. Malko, and M. D. T. Casagrande, “Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate,” J. Mater. Civ. Eng., vol. 31, no. 10, p. 04019218, 2019, doi: 10.1061/(asce)mt.1943-5533.0002863.
K. Cheng, J. Zhang, Y. Miao, B. Ruan, and T. Peng, “The effect of plastic fines on the shear modulus and damping ratio of silty sands,” Bull. Eng. Geol. Environ., vol. 78, no. 8, pp. 5865–5876, 2019, doi: 10.1007/s10064-019-01522-1.
A. Iravanian and A. B. Haider, “Soil Stabilization Using Waste Plastic Bottles Fibers: A Review Paper,” IOP Conf. Ser. Earth Environ. Sci., vol. 614, no. 1, 2020, doi: 10.1088/1755-1315/614/1/012082.
M. S. Khan, S. Hossain, and G. Kibria, “Slope Stabilization Using Recycled Plastic Pins,” J. Perform. Constr. Facil., vol. 30, no. 3, p. 04015054, 2016, doi: 10.1061/(asce)cf.1943-5509.0000809.
M. A. Islam, M. S. Hossain, F. F. Badhon, and P. Bhandari, “Performance Evaluation of Recycled-Plastic-Pin-Supported Embankment over Soft Soil,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 6, p. 04021032, 2021, doi: 10.1061/(asce)gt.1943-5606.0002528.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mundo FESC Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.