Optimización del diseño de los engranes del reductor de un vehículo todo terreno
DOI:
https://doi.org/10.61799/2216-0388.443Abstract
En la actualidad existe la tendencia de diseñar componentes mecánicos capaces de soportar elevadas cargas de operación y que al mismo tiempo sean lo más ligeros posibles. Ambas condiciones son opuestas ya que, al aligerar un componente, existe el riesgo de disminuir su capacidad de resistir cargas estructurales. En este trabajo se realiza el diseño optimizado de los engranes del reductor de velocidad de un vehículo todo terreno (VTT) con el objetivo de reducir su masa sin el incremento considerable de los esfuerzos de contacto y de flexión en los dientes. El trabajo se basa en la integración de una metodología de optimización que incluye las técnicas de evolución diferencial (ED), redes neuronales artificiales (RNA) y el método de elemento finito (MEF).
Palabras clave: Engranes, optimización, reductor de velocidad, vehículos todo terreno
Downloads
References
[2] A. Pasta y G. Virzí, “Finite element method analysis of a spur gear with a corrected profile”, The Journal of Strain Analysis for Engineering Design, vol. 42, no. 5, pp. 281-292, July 2007.
[3] S. Patil, et al, “Frictional tooth contact analysis along line of action of a spur gear using finite element method”, Procedia Materials Science, vol. 5, pp. 1801-1809, September 2014.
[4] S. Li, “Finite element analyses for contact strength and bending strength of a pair of spur gears with machining errors, assembly errors and tooth modifications”, Mechanism and Machine Theory, vol. 42, no. 1, pp. 88-114, January 2007.
[5] N. Pedersen, “Improving bending stress in spur gears using asymmetric gears and shape optimization”, Mechanism and Machine Theory, vol. 45, no. 11, pp. 1707-1720, November 2010.
[6] D. Miler, D. Zezelj, A. Loncar y K. Vuckovik, “Multi-objective spur gear pair optimization focused on volume and efficiency”, Mechanism and Machine Theory, vol 125, pp. 185-195, July 2018.
[7] V. Savsani, R. Rao y D. Vakharia, “Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms”, Mechanism and Machine Theory, vol. 45, no. 3, pp. 531-541, March 2010.
[8] J. Zhang, X. Qin, C. Xie, H. Chen y L. Jin, “Optimization design on dynamic load sharing performance for an in-wheel motor speed reducer based on genetic algorithm”, Mechanism and Machine Theory, vol. 122, pp. 132-147, April 2018
[9] G. Fu, H. Huang, Y. Li y T. Jin, “Multi-objective design optimization for a two-stage transmission system under heavy load condition”, Mechanism and Machine Theory, vol. 122, pp. 308-325, April 2018.
[10] R.G. Budinas y J.K. Nisbett. Mechanical Engineering Design, New York: Mc Graw Hill, 2006
[11] Y. Murali y T. Seshaiah, “Spur gear optimization by using genetic algorithm”, International Journal of Engineering Researchand Applications, vol. 2, no. 1, pp. 311-318, January 2012.
[12] Q. Sun, Y. Sun y L Li, “Strength analysis and tooth shape optimization for involute gear with a few teeth”, Advances in Mechanical Engineering, vol. 10, no. 1, pp. 1-11, January 2018.
[13] P. Rai y A. G. Barman, “Design optimization of spur gear using SA and RCGA”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 5, pp. 1-8, May 2018.
[14] S.P. Radzevich Dudley’s Handbook of Practical Gear Design and Manufacturing, 3rd Ed. United State: CRC Press, 2016
[15] Y. E. Hamzaoui y J. A. Hernández, “Application of Artificial Neural Networks to Predict the Selling Price in the Real Estate Valuation Process”, in 2011 10th Mexican International Conference on Artificial Intelligence, pp. 175-181, Institute of Electrical and Electronics Engineers, 2011.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.