Spectrum assignment allocation based on artificial swarm intelligence using a bioinspired hybrid metaheuristic algorithm

Authors

DOI:

https://doi.org/10.61799/2216-0388.505

Keywords:

spectrum allocation, inteligencia de enjambre, metaheuristic algorithm, heterogeneous network

Abstract

The exponential growth of the new mobile and wireless services, inherent to the needs of a hyperconnected society, demands more and more the almost immediate and permanent access of different radio resources, which implies attending in a careful way, aspects such as the expected shortage of the electromagnetic spectrum and its considerable underutilization in current radiocommunications, thus motivating the investigation of emerging models for dynamic spectrum allocation. In this way, Dynamic Spectrum Access is presented as an efficient solution for the resilient reuse of wireless communication channels in a shared scheme of frequency bands. The main challenge of dynamic spectrum allocation is to be able to guarantee to all the users of a network, protection against the interference that could be generated during the simultaneous occupation of a communication channel. Therefore, it is considered pertinent to restrict access to an overloaded number of users, in order to achieve peaceful coexistence in a given coverage area, taking into account that the simultaneous use of a channel by one or more users will be possible as long as they do not exceed the interference threshold imposed by the system. Consequently, this work uses Artificial Intelligence based on a bio-inspired hybrid metaheuristic algorithm, called Optimization by Swarm of Socio-Cognitive Particles, in order to solve the problem of Dynamic Spectrum Access in a Heterogeneous Network, having as a multi-objective utility function the metrics associated with user assignment and data rate maximization, thus mitigating the harmful impact of interference and successfully assigning spectrum to an average of 80 % of the users considered in the analysis scenario.

Downloads

Download data is not yet available.

References

A. Martínez. “Control de admisión y asignación de canal para acceso dinámico de espectro usando cómputo multi-objetivo”. Computación y Sistemas, Vol. 19, No. 2, pp. 337-355, 2015

C. Salgado. “Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas”. TECNURA, Vol. 20, No. 49, 2016

A. Martinez y Á. Andrade. “Comparing particle swarm optimization variants for a cognitive radio network”. Applied Soft Computing, Vol. 13 No. 2, pp. 1222–1234, 2013

A. Galvis y R. Márquez. “Simulación y Análisis de Alternativas para la Asignación Dinámica de Espectro en ambientes TDMA”. Proceedings IEEEE de Sistemas de Telecomunicaciones, Escuela Politécnica Nacional/IEEE ComSoc, Quito-Ecuador, 2008

D.A. Roberson, C.S. Hood, y J.L. LoCicero. “Spectral Occupancy and Interference Studies in support of Cognitive Radio Technology Deployment”. 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks (SDR), Reston, USA, pp. 26–35, 2006

N. Abbas, Y. Nasser, y K. El Ahmad. “Recent advances on artificial intelligence and learning techniques in cognitive radio networks”. EURASIP Journal on Wireless Communications and Networking, 1, 1-20, 201

Y. Zhang, Z. Zhang, Luo y H. Wang. “Initial spectrum access control with QoS protection for active users in cognitive wireless networks”. International Journal of Communication Systems, Vol. 25, No. 5, pp. 636–651, 2012

J. Tadrous, A. Sultan y M. Nafie. “Admission and Power Control for Spectrum Sharing Cognitive Radio Networks”. IEEE Transactions on Wireless, Vol. 10, No. 6, pp. 1945–1955, 2011. DOI: 10.1109/TWC.2011.040411.101571

S.D. Roy y S. Kundu. “Gradual removal of secondary user in cognitive-CDMA spectrum underlay network”. International Conference on Devices and Communications (ICDeCom), Mesra, Algeria, pp. 1–4, 2011

B. Wang y D. Zhao. “Performance analysis in CDMA-based cognitive wireless networks with spectrum underlay”. IEEE Global Telecommunications Conference (IEEE GLOBECOM), New Orleans, USA, pp. 1–6, 2008

P. Liu, J. Li y H. Li. “An Iteration Resource Allocation Method to Maximize Number of Users with QoS Demand in Femtocell Networks”. 2nd IEEE/CIC Conference on Communications in China, pp. 554-558, 2013

O. Ulgen, B. John, y J. Betty. “Simulation Methodology – A Practitioner’s Perspective”, University of Michigan – Dearborn and Production Modeling Corporation. 2006

J. Kennedy y R. Eberhart. “Particle swarm optimization”. In Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942–1948, 1995

A. Cervantes. “Clasificación mediante enjambre de prototipos”. Tesis Doctoral. Departamento de Informática. Universidad Carlos III de Madrid. 2016

K. Deep y J.C. Bansal. “A Socio-Cognitive Particle Swarm Optimization for Multi-Dimensional Knapsack Problem”. Emerging Trends in Engineering and Technology Conference (ICETET), pp. 355–360, 2008

K. Deb. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons. 2001

R.T. Marler y J.S. Arora. “The weighted sum method for multi-objective optimization: new insights”. Structural and Multidisciplinary Optimization, Vol. 41 No. 6, pp. 853–862, 2010

A. Martínez y A. Andrade. “Deployment analysis and optimization of heterogeneous networks under the spectrum underlay strategy”. EURASIP Journal on Wireless Communications and Networking, vol. 1, pp. 1-15, 2015

A. Martínez y A. Andrade. “Comparing particle swarm optimization variants for a cognitive radio network”. ELSEVIER, pp. 1222-1234, 2012

Z. Haibo, Y. Quan, S. Xuemin, W, Shaohua y Z, Qinyu. “Dynamic Sharing of Wireless Spectrum”. Springer, 2017

A. Karandikar, N. Akhtar y M. Mehta. Mobility Management in LTE Heterogeneous Networks. Singapore: Springer. 2017

T. Erpek, M.A. Mchenry y A. Stirling. “Dynamic spectrum access operational parameters with wireless microphones”. IEEE Communications Magazine, Vol. 49, No. 3, pp. 38–45, 2011. DOI: 10.1109/MCOM.2011.5723798

M. Esteban. “Optimización Binaria por Cúmulo de Partículas con Memoria (MBPSO) para Resolver un Problema de Espectro Compartido”. Computación y Sistemas, vol. 20, No. 1, pp. 153-168, 2016

M. Ali, S. Qaisar y M. Naeem. "Resource allocation for licensed and unlicensed spectrum in 5G heterogeneus networks".Transactions on Emerging Telecommunications Technologies, e3299, 2018.

Published

2020-01-01

How to Cite

Mora-Arroyo, J. E., Miramá-Pérez, V. F., & Erazo-de la Cruz, O. F. (2020). Spectrum assignment allocation based on artificial swarm intelligence using a bioinspired hybrid metaheuristic algorithm. Mundo FESC Journal, 10(19), 20–39. https://doi.org/10.61799/2216-0388.505

Issue

Section

Artículo Originales