Technical-economic evaluation of a natural gas self-generation system to reduce electricity costs and improve the reliability of a food distribution center
DOI:
https://doi.org/10.61799/2216-0388.790Keywords:
self-generation, energy evaluation, economic evaluation, CEDIAbstract
The CEDI (Distribution Center) is a 24/7 storage and cross-docking facility consisting of a warehouse for dry products and another for refrigerated products. The CEDI has a projected average electrical energy consumption of 426,891 kWh/month, of which 110,643 kWh/month will be supplied by photovoltaic solar energy and the rest will be supplied by the self-generation system. To technically and economically evaluate the implementation of a natural gas self-generation system to reduce electric energy costs and improve the reliability of a food distribution center in the city of Barranquilla. Methods: In order to achieve the proposed objective, an energy characterization and an energy and economic evaluation of 3 different energy scenarios are carried out. According to the current and projected scenarios, the coverage of sources, and the availability of technology in the market, the project is technically feasible and through the evaluated alternatives, the ease, simplicity and availability of energy generation from microturbines and the greater efficiency, catalog of suppliers, and low initial cost of generation from internal combustion engines stand out. It can be affirmed that the advantages offered by the microturbine configuration are better suited to the commercial nature and current operating conditions of the CEDI.
Downloads
References
L. Barrios-Guzmán, Y. Cárdenas-Escorcia and G. Valencia-Ochoa, “Trend Analysis of Energy Efficiency Research in Refrigeration Systems during the years 2013 to 2017,” 2017. Accessed: Jul. 26, 2019. [Online]. Available: http://www.revistaespacios.com/a17v38n54/a17v38n54p12.pdf
Y. C. Ortiz González y I. M. González Gaitán, "Control estadístico de procesos en organizaciones del sector servicios", Respuestas, vol. 23, no. S1, pp. 42–49, 2018
G. Valencia, M. Vanegas and E. Villicana, Disponibilidad geográfica y temporal de la energía solar en la Costa Caribe colombiana. Universidad del Atlántico, 2016
G. Valencia, M. Vanegas and J. Polo, Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira. Barranquilla: Universidad del Atlántico, 2016
X. Castells, Tratamiento y Valorización energética de residuos. Ediciones Díaz de Santos, 2012
M. Abbasi, M. Chahartaghi, and S. M. Hashemian, “Energy , exergy , and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime movers,” Energy Conversion and Management, vol. 173, no. July, pp. 359–374, 2018. Doi: 10.1016/j.enconman.2018.07.095
K. K. Roman and J. B. Alvey, “Selection of prime mover for combined cooling , heating , and power systems based on energy savings , life cycle analysis and environmental consideration,” Energy and Buildings, vol. 110, pp. 170–181, 2016. Doi: 10.1016/j.enbuild.2015.10.047
G. Fadiran, A. T. Adebusuyi, and D. Fadiran, “Natural gas consumption and economic growth: Evidence from selected natural gas vehicle markets in Europe,” Energy, vol. 169, pp. 467–477, 2019. Doi: https://doi.org/10.1016/j.energy.2018.12.040
F. Feijoo et al., “The future of natural gas infrastructure development in the United states,” Applied Energy, vol. 228, pp. 149–166, 2018. Doi: https://doi.org/10.1016/j.apenergy.2018.06.037
E. D. Ramos Ramos, “Análisis de la eficiencia energética y calidad de la energía eléctrica en la planta industrial de procesamiento de alimentos Agroindustrias Cirnma S.R.L. en la región Puno,” 2018
Agencia de Sostenibilidad Energética, “Cogeneración,” [En línea] Accedido: Feb. 11, 2019. Disponible en: https://www.cogeneracioneficiente.cl/
Power Engineering International, “Gas turbines for cogeneration – efficiency is everything,” [En línea] Accedido: Sep 23, 2020. Disponible en: https://www.powerengineeringint.com/coal-fired/equipment-coal-fired/gas-turbines-for-cogeneration-efficiency-is-everything/
F. E. Moreno-García, J. J. Ramírez-Matheus, y O. D. Ortiz-Ramírez, "Sistema de supervisión y control para un banco experimental de refrigeración por compresión"., Respuestas, vol. 21, no.1, pp. 97–107, 2016. Doi: https://doi.org/10.22463/0122820X.641
R. Magesh, "OTEC technology- A world of clean energy and water", WCE 2010 - World Congress on Engineering 2010, vol. 2, pp. 1618-1623, 2010
N. Srinivasan, "A new improved ocean thermal energy conversion system with suitable floating vessel design", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, vol. 4, no. B, pp. 1119-1129, 2019. Doi: https://doi.org/10.1115/OMAE2009-80092
C.R. Upshaw, Thermodynamic and economic feasibility analysis of a 20 MW Ocean Thermal energy conversion (OTEC) power. Austin: University of Texas at Austin, 2012
D. Esposito, "Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future", Joule, vol. 1, no. 4, pp. 651-658, 2017. Doi: https://doi.org/10.1016/j.joule.2017.07.003
UPME - Unidad de Planeación Minero Energética, “Resolución No. 000642 de 2019.” pp. 4, 2019
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.