Physicochemical characteristics of refractory bricks used in the ceramic industry kilns from eastern Colombia

Authors

  • John Freddy Gelves-Díaz Universidad Francisco de Paula Santander https://orcid.org/0000-0002-1238-6911
  • Jessica Viviana Sánchez-Zuñiga Universidad Francisco de Paula Santander
  • Jorge Sánchez-Molina Universidad Francisco de Paula Santander

DOI:

https://doi.org/10.61799/2216-0388.973

Keywords:

ceramic materials, hive kiln, technological properties, thermal efficiency

Abstract

The main characteristics of the refractory bricks used in the construction of inverted flame ovens (hive) used in the brick industry, present in the metropolitan area of Cúcuta are analyzed. Two materials manufactured in the region (CUC-1 and CUC-2) were analyzed. The characterization included analysis by X-ray diffraction and fluorescence, scanning electron microscopy and microchemistry, dilatometry, thermal conductivity, pyroscopic resistance (fusion cones), compressive strength, percentage of water absorption and dimensional analysis. The results obtained show that a large part of the materials analyzed are characterized by having a high concentration of quartz in their composition (between 48% and 65%), there is a low presence of phases rich in aluminum such as alumina and mullite, which are relevant in this type of applications. The aluminum content is between 16,55 and 17,99% with a higher content in CUC-2. Regarding the pyroscopic resistance, it is evident that all the materials have a softening temperature below 1400°C with CUC-2>CUC-1. The thermal conductivity was between 0,7367 and 0,7404 W/m.K, showing a low applicability as insulator of these materials. The dilatometric changes are more marked in CUC-1 than in CUC-2, a situation that was associated with lower firing temperatures of these bricks.

Downloads

Download data is not yet available.

References

R. G. Prieto, C.L Guatame y S.C Cárdenas. "Recursos minerales de Colombia", vol 1. Bogotá: Servicio Geológico Colombiano, 2019. [En línea]. Disponible en: https://www2.sgc.gov.co/Publicaciones/Cientificas/NoSeriadas/Documents/recursos-minerales-de-colombia-vol-1.pdf

J. Sánchez, J. Gelves and Y- Romero-Arcos, “Caracterización tecnológica y del talento humano de las empresas fabricantes de cerámica roja ubicadas en el área metropolitana de Cúcuta”, Respuestas, vol. 17, no. 2, pp. 71-80, 2012. https://doi.org/10.22463/0122820X.423

Unidad de Planeación Minero-energética, "Estudio de producción de coque y carbón metalúrgico, usos y comercialización", Bogotá: editorial de la UPME, 2012. [En línea]. Disponible: https://bdigital.upme.gov.co/handle/001/1107?mode=full.

J. Díaz y J. Sánchez J, Introducción a los hornos utilizados en la industria cerámica tradicional, Cúcuta: Editorial Universidad Francisco de Paula Santander, 2011

J. Díaz, J. Sánchez and J. Prato, “Energy-Environmental diagnosis of the ceramic sector companies in the metropolitan area of Cucuta, Norte de Santander, Colombia”, Key Engineering Materials, vol. 663, pp. 133-139, 2016. Doi:10.4028/www.scientific.net/KEM.663.133

C. Bustos y Y. Guevara, "Evaluación comparativa técnica, económica y ambiental de hornos colmena utilizando como combustible carbón, fuel Oil, gas natural y el nuevo combustible tipo CCTA", undergraduate thesis, Cúcuta: Universidad Francisco de Paula Santander, Cúcuta, Colombia, 2007

E. Vera, "Modelación de la Presión y Velocidad en el Proceso de Combustión de un Horno tipo Colmena", M.S. Thesis, San Cristobal: Universidad Nacional experimental del Táchira, 2005

F. Medall, "Mecanismo de la formación y cinética de la oxidación del corazón negro durante la cocción de piezas cerámicas", Ph. D. dissertation, Valencia: Universitat de Valencia,1989

D. A. Brosnan, Alumina-Silica Brick, in Refractories handbook. Londres: Editorial Taylor & Francis Group, 2004

International Organization for Standardization, "Plastics — termination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat source (hot disc) method", First edition, 2008. [En línea]. Disponible en: https://www.iso.org/standard/40683.html

American Society for Testing and Materials, "ASTM C24 – 09, Standard Test Method for Pyrometric Cone Equivalent (PCE) of Fireclay and High-Alumina Refractory Materials,West Conshohocken: ASTM", 2018. [En línea]. Disponible en: https://tienda.aenor.com/norma-astm-c24-09-067967

Instituto colombiano de normas técnicas y certificación, "NTC 682 Refractarios. Método de ensayo para determinar la resistencia a la compresión en frio y el módulo de ruptura de refractarios", Bogotá: Icontec 2015. [En línea]. Disponible en: https://tienda.icontec.org/gp-refractarios-metodo-de-ensayo-para-determinar-la-resistencia-a-la-compresion-en-frio-y-el-modulo-de-ruptura-de-refractarios-ntc682-2000.html

American Society for Testing and Materials, "ASTM C20– 00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, West Conshohocken: ASTM", 2015. [En línea]. Disponible en: https://tienda.aenor.com/norma-astm-c20-00-001490

Instituto Colombiano de Normas Técnicas y Certificación, "NTC 773 Clasificación de ladrillos refractarios de arcilla refractaria (silicoaluminosos o de baja alúmina) y de alta alúmina", Bogotá: Icontec, 2018. [En línea]. Disponible en: https://tienda.icontec.org/gp-clasificacion-de-ladrillos-refractarios-de-arcilla-refractaria-silicoaluminosos-o-de-baja-alumina-y-de-alta-alumina-ntc773-2018.html

Compañía Gamma-Erecos, "Catálogo cerámica roja", [En línea]. Disponible en: https://www.gamma.com.co/catybro_refractarios/

R. Inoriza, “Introducción a los materiales refractarios”, Técnica Industrial, vol. 248, no. 54, 2003

A. X. Moreno Erazo, "Obtención tecnológica de mullita a partir de arcillas y caolines refractarios argentinos, y alúmina calcinada o alúminas hidratadas", Doctoral dissertation, Buenos Aires: Universidad Nacional de La Plata, 2014

D. Álvarez-Rozo, J. Sánchez-Molina and J. F. Gelves, “Influence of raw materials and forming technique in the manufacture of stoneware ceramic”, Ingeniería y competitividad, vol. 19, no. 2, pp. 93-105, 2017

S. P. Chaudhuri, “A Review on the Kaolinite-Mullite Transformation”, Transactions of the Indian Ceramic Society, vol. 36, no. 4, pp. 71-81, 1977

J. García et al.,“Thermal conductivity de traditional ceramics, part II, influence de mineralogical composition”, Ceramics international, vol. 36, pp. 2017-2024, 2010. Doi:10.1016/j.ceramint.2010.05.013

M. Lassinantti, A. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, M. Hanuskova, “Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials”, Applied Clay Science , vol. 49, pp. 269–275, 2010. Doi:10.1016/j.clay.2010.06.002

A.S Gray, C. Uher, “Thermal conductivity of mica at low temperatures”, Journal of Materials Science, vol. 12, no. 5, pp. 959-965, 1977

J. P Holman, J. P. Heat, Transfer, 9th Edition, Boston: McGraw-Hill International Book Company, 2002

Published

2021-09-01

How to Cite

Gelves-Díaz, J. F., Sánchez-Zuñiga, J. V., & Sánchez-Molina, J. (2021). Physicochemical characteristics of refractory bricks used in the ceramic industry kilns from eastern Colombia. Mundo FESC Journal, 11(S2), 250–261. https://doi.org/10.61799/2216-0388.973

Issue

Section

Articulos

Most read articles by the same author(s)