Fuzzy Neural Classifier Applied to Cases of Synthetic Data

Authors

  • Jose Gerardo Chacón Rangel Universidad de Pamplona
  • Anderson Smith Florez Fuentes Universidad de Pamplona
  • Johel Enrique Rodriguez Fernandez Universidad de Pamplona

DOI:

https://doi.org/10.61799/2216-0388.54

Abstract

ABSTRACT This article presents the development of a computational system that allows diffuse neuronal classify cases of synthetic data through patterns overlap with controlled. They built a series of models with neural fuzzy logic and neural networks that were analyzed using different percentages of overlap. Depending on the results obtained, was selected the best model to classify the patterns in accordance with appropriate criteria for performance as permissible and training time. We obtained a model able to identify a type of class, which tends to minimize the errors of classification. The diffuse neuronal model of this type can help specialists from different disciplines to diagnose with a minimum of error, when data are traits with overlapping patterns.

Downloads

Download data is not yet available.

Author Biographies

  • Jose Gerardo Chacón Rangel, Universidad de Pamplona
    Facultad de Ingenierías y Arquitecturas Ingeniería de Sistemas (Villa del Rosario)
  • Anderson Smith Florez Fuentes, Universidad de Pamplona
    Facultad de Ingenierías y Arquitecturas Ingeniería de Sistemas (Villa del Rosario)
  • Johel Enrique Rodriguez Fernandez, Universidad de Pamplona
    Facultad de Ingenierías y Arquitecturas Ingeniería de Sistemas (Villa del Rosario)

References

Bishop, C. (1994). Neural Networks and their applications. Rev.Sci.Instrum., 65(6), 1803-1832. DOI: https://doi.org/10.1063/1.1144830

Duch, W.; Adarnzak, R.; Grabczewski, K. (2001). A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE trans. Neural Networks, 12, 277–306. DOI: https://doi.org/10.1109/72.914524

Duch, W.; Setiono, R.; Zurada, J. (2004). Computacional Methods for Rule-Based Data Understanding. Proceedings of the IEEE, 92(5), 771-805. DOI: https://doi.org/10.1109/JPROC.2004.826605

Hayashi, Y. (1994). Neural expert system using fuzzy teaching input and its application to medical diagnossis, Information scieces applications, 1, 47-58. DOI: https://doi.org/10.1016/1069-0115(94)90019-1

Hayashi, Y.; Imura, A.; Yoshida, K. (1990). Fuzzy neural expert system and its application to medical diagnosis, 8th International Congress on Cybernetics and Systems, New York City, 54-61.

Ma, L.; Chen, H.; Tian, Z.; He, W. (1999). Monitoring the particle size in CFB using fuzzy neural network. United States: American Society of Mechanical Engineers, New York, NY (US).

Mitra, S.; Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks, 11, 748-768. DOI: https://doi.org/10.1109/72.846746

Pal, S.; Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Networks, 3(5). DOI: https://doi.org/10.1109/72.159058

Pal, S.; Mitra, S. (1999). Neuro-Fuzzy Pattern Methods in soft Computing, Indian Statistical Institute Calcuta. Editorial Wiley and Sons, IN C.

Ramirez, C.; Vladimirova, T.A. (1995). Fuzzy neural network for fuzzy classification En IEEE International Conference on Systems, Man and Cybernetics. Vancouver, Canada, 322-327.

Downloads

Published

2015-12-22

Issue

Section

Articulos

How to Cite

Chacón Rangel, J. G., Florez Fuentes, A. S., & Rodriguez Fernandez, J. E. (2015). Fuzzy Neural Classifier Applied to Cases of Synthetic Data. Mundo FESC Journal, 5(9), 6-13. https://doi.org/10.61799/2216-0388.54

Most read articles by the same author(s)