Effect of morphological filters on the moving object detection process
DOI:
https://doi.org/10.61799/2216-0388.676Keywords:
back ground subtraction, morphological filters, objectdetection, image processingAbstract
In the processes of background subtraction applied to the detection of moving objects, one of the most relevant stages is the filtering by morphology, where the image is simplified and most of the shape characteristics of the objects are preserved. Therefore, a comparison is made between the operations of dilation, erosion, opening, closing and gradient in video images with static background, where people circulate in uncontrolled environments, to determine their behavior in the detection and counting of people. Image processing is performed in Python language and the specialized computer vision package OpenCV is used. In addition, a graphical user interface was developed using Tkinter to enter the values of the size and shape of the structural element for processing. When applying the morphological filtering by dilatation, a success in the detections of 82.28 %, with erosion the accuracy was 81.86 %, while, with the opening, closing and gradient operations the accuracy was 83.69 %, 93.07 % and 87.69 % respectively.
Downloads
References
K. Mistry and A. Saluja, “An Introduction to OpenCV using Python with Ubuntu,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 1, no. 2, pp. 65–68, 2016
C. Vicente Nino Rondon, S.A. Castro Casadiego, B.M. Delgado, D.G. Ibarra, and M.E. Posada Haddad, “Real-Time Detection and Clasification System of Biosecurity Elements Using Haar Cascade Classifier with Open Source,” in 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Nov. 2020, pp. 1–6, doi: 10.1109/CIIMA50553.2020.9290295
E.N. Kajabad and S.V. Ivanov, “People Detection and Finding Attractive Areas by the use of Movement Detection Analysis and Deep Learning Approach,” Procedia Comput. Sci., vol. 156, pp. 327–337, 2019, doi: 10.1016/j.procs.2019.08.209
C.V. Niño Rondón, S.A. Castro Casadiego, B. Medina Delgado, D. Guevara Ibarra, and L.L. Camargo Ariza, “Comparativa entre la técnica de umbralización binaria y el método de Otsu para la detección de personas,” Rev. UIS Ing., vol. 20, no. 2, pp. 65–73, 2021, doi: 10.18273/revuin.v20n2-2021006
J. Andrés, G. Pinzon, and L.E. Mendoza, “Adquisición Y Procesamiento De Señales Emg Para Controlar Movimiento De Un Brazo Hidraulico,” Mundo FESC, vol. 1, no. 7, pp. 49–60, 2014
D. Vera Mujica, N. Contreras Reyes, and J. Araujo Vargas, “Implementación de un brazo robótico con tratamiento digital de imágenes,” Mundo FESC, vol. 2, no. 12, pp. 20–25, 2016
F. Pineda Torres, “Técnicas de slam con filtros probabilísticos ; caracterización y resultados en robots móviles,” Mundo FESC, vol. 9, no. 18, pp. 7–15, 2019, [Online]. Available: https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/408
R.F. Pinto, C.D.B. Borges, A.M.A. Almeida, and I.C. Paula, “Static Hand Gesture Recognition Based on Convolutional Neural Networks,” J. Electr. Comput. Eng., vol. 2019, pp. 1–12, 2019, doi: 10.1155/2019/4167890
X. Zhang and F. Chen, “Lane Line Edge Detection Based on Improved Adaptive Canny Algorithm,” J. Phys. Conf. Ser., vol. 1549, no. 2, 2020, doi: 10.1088/1742-6596/1549/2/022131
P. Huamaní Navarrete, “Umbralización múltiple utilizando el método de Otsu para reconocer la luz roja en semáforos,” Scientia, vol. 17, no. 17, pp. 247–262, 2016, doi: 10.31381/scientia.v17i17.393
E.S. Gedraite and M. Hadad, “Investigation on the effect of a Gaussian Blur in image filtering and segmentation,” Proc. Elmar - Int. Symp. Electron. Mar., no. August, pp. 393–396, 2011
E. Ropero-silva, K. Sanchez-mojica, and S. Castro-casadiego, “Vulnerabilidad en la seguridad del internet de las cosas Vulnerability in the security of the internet of things,” vol. 10, no. 19, pp. 162–179, 2020
G. Sánchez-Torres and J.A. Taborda-Giraldo, “Estimación automática de la medida de ocupación de playas mediante procesamiento de imágenes digitales,” TecnoLógicas, vol. 17, no. 33, p. 21, 2014, doi: 10.22430/22565337.543
N. Sharmin and R. Brad, “Optimal filter estimation for Lucas-Kanade optical flow,” Sensors (Switzerland), vol. 12, no. 9, pp. 12694–12709, 2012, doi: 10.3390/s120912694
A. Sarmiento, I. Fondón, M. Velasco, A. Qaisar, and P. Aguilera, “Modelo de Mezcla de Gaussianas Generalizadas para Segmentación de Melanomas,” Congr. Anu. la Soc. Española Ing. Biomédica, no. November, 2014
P. Suárez and M. Villavicencio, “Detección de Contornos utilizando el Algoritmo Canny en Imágenes Cross-Espectrales Fusionadas,” Enfoque UTE, vol. 8, no. 1, p. 16, 2017, doi: 10.29019/enfoqueute.v8n1.127
S.Y. Ma, A. Khalil, H. Hajjdiab, and H. Eleuch, “Quantum dilation and erosion,” Appl. Sci., vol. 10, no. 11, pp. 1–13, 2020, doi: 10.3390/app10114040
A. Mehdizadeh, M.M. Disfani, R. Evans, A. Arulrajah, and D.E.L. Ong, “Application of image processing in internal erosion investigation,” ICSMGE 2017 - 19th Int. Conf. Soil Mech. Geotech. Eng., vol. 2017-Septe, no. September, pp. 2925–2928, 2017
C. Shan, B. Huang, and M. Li, “Binary Morphological Filtering of Dominant Scattering Area Residues for SAR Target Recognition,” Comput. Intell. Neurosci., vol. 2018, 2018, doi: 10.1155/2018/9680465
X. Wang, Q. Zhao, and J. Tan, “Improved Morphological Band-Pass Filtering Algorithm and Its Application in Circle Detection,” Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/3765164
J.A.M. Saif, M.H. Hammad, and I.A.A. Alqubati, “Gradient Based Image Edge Detection,” Int. J. Eng. Technol., vol. 8, no. 3, pp. 153–156, 2016, doi: 10.7763/ijet.2016.v6.876
L. Dang, G. Tewolde, X. Zhang, and J. Kwon, “Reduced resolution lane detection algorithm,” 2017 IEEE AFRICON Sci. Technol. Innov. Africa, AFRICON 2017, pp. 1459–1464, 2017, doi: 10.1109/AFRCON.2017.8095697
L. Neumann and A. Vedaldi, “Tiny People Pose,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11363 LNCS, pp. 558–574, 2019, doi: 10.1007/978-3-030-20893-6_35
J.D. Arias Hernández, A.F. Jiménez López, and H.O. Porras Castro, “Desarrollo de aplicaciones en python para el aprendizaje de física computacional,” Ing. Investig. y Desarro., vol. 16, no. 1, p. 72, 2016, doi: 10.19053/1900771x.5122
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.