Angular position control for solar panel based on neural networks and intelligent control
DOI:
https://doi.org/10.61799/2216-0388.944Keywords:
PID Control, Neural Networks, Solar Panel, Intelligent ControlAbstract
In Ciudad Juarez Chihuahua Mexico there are more than 300 sunny days a year, which means that the solar energy source is a viable form of energy transformation. Therefore, an intelligent controller proposal for the angular position of a solar panel is presented, where the controller's reference signal is obtained from the output of a multilayer neural network previously trained with sun location data. The training data was obtained from the INEGI database in Mexico and from other open access repositories. In addition, the mechanical design and its integration of the parts that make up the solar panel are shown. The closed loop controller designed makes use of a PID with the intention of becoming robust against external disturbances to the system. This allows minimizing the effect of non-modeled dynamic variables that could affect the performance of the panel-actuator system. The experimental results show an underdamped response of the controlled output at this transient and zero error at steady state. The design proposal demonstrates adequate solar reference position tracking, which can be implemented at low cost.
Downloads
References
F. Ballester, J. Díaz, J. M. Moreno. “Cambio climático y salud pública: escenarios después de la entrada en vigor del Protocolo de Kioto”. Gaceta Sanitaria, vol. 20, pp. 160-174, 2006
Comisión federal de electricidad (CFE), www.cfe.mx, 2021
R. Hernández. "Diseño, selección, instalación y puesta en marcha de un sistema fotovoltaico para el hotel mesón san Sebastián con conexión a red de cfe", Centro de Investigación en materiales avanzandos, 2017.
R. E. P. Blanco, J. C. P. Gutiérrez, J. R. Dávila. “Estudio de la radiación solar incidente en la región de Ciudad Juárez”. Ciencia en la frontera, 21,2009. http://bva.colech.edu.mx/xmlui/handle/1/1811
C. C. R Chávez, T. C Picasso, G. Padilla. Financiamiento al campo para proyectos de energía solar fotovoltaica. Ciudad Juárez, Chihuahua, México: El Colegio de Chihuahua, 2017. [En línea]. Disponible en: https://www.researchgate.net/profile/Esmeralda_Cervantes_Rendon/publication/329544726_El_Valle_de_Juarez_su_historia_economia_y_ambiente_para_el_uso_de_energia_fotovoltaica/links/5c0ef1104585157ac1b90e2e/El-Valle-de-Juarez-su-historia-economia-y-ambiente-para-el-uso-de-energia-fotovoltaica.pdf#page=107
D. Hoyos, M. Gea, C. Cadena, R. Echazú. “Diseño y construcción de seguidores solares”. Avances en Energías Renovables y Medio Ambiente, vol. 12, pp. 71-77, 2008
S. Sheikh, A. Javed, M. Anas, F. Ahmed. “Solar based smart irrigation system using PID controller”. In IOP Conference Series: Materials Science and Engineering, vol. 414, no. 1, p. 012040, 2018
S. D. Hanwate, Y.V. Hote. “Design of PID controller for sun tracker system using QRAWCP approach”. International Journal of Computational Intelligence Systems, vol. 11, no. 1, pp. 133-145, 2018.
E. Díaz-Dorado, A. Suárez-García, C.J. Carrillo, J. Cidrás. “Optimal distribution for photovoltaic solar trackers to minimize power losses caused by shadows”. Renewable energy, vol. 36, no. 6, pp. 1826-1835, 2011
X. Lu, Q. Zhang, J. Hu. “A linear piezoelectric actuator based solar panel cleaning system”. Energy, vol. 60, pp. 401-406, 2013
M. Algazar, H. Abd El-Halim, M.E.E. Salem. “Maximum power point tracking using fuzzy logic control”. International Journal of Electrical Power & Energy Systems, vol. 39, no. 1, pp. 21-28. 2012
H. Salim, F. Sultan, R. Jawad, R. “Comparison between PID and artificial neural networks to control of boiler for steam power plant”, Journal of engineering sciencies, vol. 6, no. 1, 2019
M. Hadjab, S. Berrah, A. Hamza. “Neural network for modeling solar panel”. International journal of energy, vol. 6, no. 1, pp. 9-16. 2012
A. Gaytán-Mascorro, Y.I. Chew-Madinaveitia, D.G. Reta-Sánchez , J.D.J. Espinoza-Arellano, I.R. Juárez. “Uso de injertos en hortalizas”. Memoria de la XXV Semana Internacional de Agronomía. Facultad de Agronomía y Zootecnia–Universidad de Juárez del Estado de Durango, vol. 37-52. 2013
S. S Haykin Neural networks and learning machines/Simon Haykin. 2009
R. Setiono. “Feedforward neural network construction using cross validation”, Neural Computation, vol. 13, no. 12, pp. 2865-2877, 2001
H. Yu, B.M. "Wilamowski. Levenberg-marquardt training", Industrial electronics handbook, vol. 5, no. 12, pp. 1. 2011
Mathworks Inc. https://la.mathworks.com
Arduino trademark. https://www.arduino.cc
K. Ogata. Ingeniería de control moderna. Pearson Educación. 2003
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.